Skip to main content
Erschienen in: BIT Numerical Mathematics 4/2020

23.06.2020

Variational formulation for fractional inhomogeneous boundary value problems

verfasst von: Taibai Fu, Zhoushun Zheng, Beiping Duan

Erschienen in: BIT Numerical Mathematics | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The steady state fractional convection diffusion equation with inhomogeneous Dirichlet boundary is considered. By utilizing standard boundary shifting trick, a homogeneous boundary problem is derived with a singular source term which does not belong to \(L^2\) anymore. The variational formulation of such problem is established, based on which the finite element approximation scheme is developed. Inf-sup conditions for both continuous case and discrete case are demonstrated thus the corresponding well-posedness is verified. Furthermore, rigorous regularity analysis for the solutions of both original equation and dual problem is carried out, based on which the error estimates for the finite element approximation are derived. Numerical results are presented to illustrate the theoretical analysis.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat del-Castillo-Negrete, D.: Fractional diffusion models of nonlocal transport. Phys. Plasmas 13(8), 082308 (2006)MathSciNetCrossRef del-Castillo-Negrete, D.: Fractional diffusion models of nonlocal transport. Phys. Plasmas 13(8), 082308 (2006)MathSciNetCrossRef
2.
Zurück zum Zitat Baeumer, B., Kovács, M., Meerschaert, M.M., Sankaranarayanan, H.: Boundary conditions for fractinal diffusion. J. Comput. Appl. Math. 336, 408–424 (2018)MathSciNetCrossRef Baeumer, B., Kovács, M., Meerschaert, M.M., Sankaranarayanan, H.: Boundary conditions for fractinal diffusion. J. Comput. Appl. Math. 336, 408–424 (2018)MathSciNetCrossRef
4.
Zurück zum Zitat Jia, L., Chen, H., Ervin, V.J.: Existence and regularity of solutions to 1-D fractional order diffusion equations. Electron. J. Differ. Equ. 2019(93), 1–21 (2019)MathSciNetMATH Jia, L., Chen, H., Ervin, V.J.: Existence and regularity of solutions to 1-D fractional order diffusion equations. Electron. J. Differ. Equ. 2019(93), 1–21 (2019)MathSciNetMATH
5.
Zurück zum Zitat Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Part Differ. Equ. 22(3), 558–576 (2006)MathSciNetCrossRef Ervin, V.J., Roop, J.P.: Variational formulation for the stationary fractional advection dispersion equation. Numer. Methods Part Differ. Equ. 22(3), 558–576 (2006)MathSciNetCrossRef
6.
Zurück zum Zitat Ervin, V.J., Roop, J.P.: Variational solution of fractional advection dispersion equations on bounded domains in \(R^{d}\). Numer. Methods Part Differ. Equ. 23(2), 256–281 (2007)CrossRef Ervin, V.J., Roop, J.P.: Variational solution of fractional advection dispersion equations on bounded domains in \(R^{d}\). Numer. Methods Part Differ. Equ. 23(2), 256–281 (2007)CrossRef
7.
Zurück zum Zitat Wang, H., Yang, D., Zhu, S.: Inhomogeneous Dirichlet boundary-value problems of space-fractional diffusion equations and their finite element approximations. SIAM J. Numer. Anal. 51(3), 1292–1310 (2014)MathSciNetCrossRef Wang, H., Yang, D., Zhu, S.: Inhomogeneous Dirichlet boundary-value problems of space-fractional diffusion equations and their finite element approximations. SIAM J. Numer. Anal. 51(3), 1292–1310 (2014)MathSciNetCrossRef
8.
Zurück zum Zitat Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comput. 84(296), 2665–2700 (2015)MathSciNetCrossRef Jin, B., Lazarov, R., Pasciak, J., Rundell, W.: Variational formulation of problems involving fractional order differential operators. Math. Comput. 84(296), 2665–2700 (2015)MathSciNetCrossRef
9.
Zurück zum Zitat Jin, B., Lazarov, R., Zhou, Z.: A Petrov–Galerkin finite element method for fractional convection–diffusion equations. SIAM J. Numer. Anal. 54(1), 481–503 (2016)MathSciNetCrossRef Jin, B., Lazarov, R., Zhou, Z.: A Petrov–Galerkin finite element method for fractional convection–diffusion equations. SIAM J. Numer. Anal. 54(1), 481–503 (2016)MathSciNetCrossRef
10.
Zurück zum Zitat Zayernouri, M., Karniadakis, G.E.: Fractional Sturm–Liouville eigen-problems. J. Comput. Phys. 252, 495–517 (2013)MathSciNetCrossRef Zayernouri, M., Karniadakis, G.E.: Fractional Sturm–Liouville eigen-problems. J. Comput. Phys. 252, 495–517 (2013)MathSciNetCrossRef
11.
Zurück zum Zitat Zayernouri, M., Karniadakis, G.E.: Exponentially accurate spectral and spectral element methods for fractional ODEs. J. Comput. Phys. 257, 460–480 (2014)MathSciNetCrossRef Zayernouri, M., Karniadakis, G.E.: Exponentially accurate spectral and spectral element methods for fractional ODEs. J. Comput. Phys. 257, 460–480 (2014)MathSciNetCrossRef
12.
Zurück zum Zitat Chen, S., Shen, J., Wang, L.-L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603–1638 (2015)MathSciNetCrossRef Chen, S., Shen, J., Wang, L.-L.: Generalized Jacobi functions and their applications to fractional differential equations. Math. Comput. 85(300), 1603–1638 (2015)MathSciNetCrossRef
13.
Zurück zum Zitat Mao, Z., Chen, S., Shen, J.: Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106, 165–181 (2016)MathSciNetCrossRef Mao, Z., Chen, S., Shen, J.: Efficient and accurate spectral method using generalized Jacobi functions for solving Riesz fractional differential equations. Appl. Numer. Math. 106, 165–181 (2016)MathSciNetCrossRef
14.
Zurück zum Zitat Mao, Z., Shen, J.: Spectral element method with geometric mesh for two-sided fractional differential equations. Adv. Comput. Math. 44(3), 745–771 (2018)MathSciNetCrossRef Mao, Z., Shen, J.: Spectral element method with geometric mesh for two-sided fractional differential equations. Adv. Comput. Math. 44(3), 745–771 (2018)MathSciNetCrossRef
15.
Zurück zum Zitat Sheng, C., Shen, J.: A hybrid spectral element method for fractional two-point boundary value problems. Numer. Math. Theory Methods Appl. 10(2), 437–464 (2017)MathSciNetCrossRef Sheng, C., Shen, J.: A hybrid spectral element method for fractional two-point boundary value problems. Numer. Math. Theory Methods Appl. 10(2), 437–464 (2017)MathSciNetCrossRef
16.
Zurück zum Zitat Hou, D., Xu, C.: A fractional spectral method with applications to some singular problems. Adv. Comput. Math. 43(5), 911–944 (2017)MathSciNetCrossRef Hou, D., Xu, C.: A fractional spectral method with applications to some singular problems. Adv. Comput. Math. 43(5), 911–944 (2017)MathSciNetCrossRef
17.
Zurück zum Zitat Hou, D., Hasan, M.T., Xu, C.: Müntz spectral methods for the time-fractional diffusion equation. Comput. Methods Appl. Math. 18(1), 43–62 (2018)MathSciNetCrossRef Hou, D., Hasan, M.T., Xu, C.: Müntz spectral methods for the time-fractional diffusion equation. Comput. Methods Appl. Math. 18(1), 43–62 (2018)MathSciNetCrossRef
18.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic Press, New York (1998)MATH Podlubny, I.: Fractional Differential Equations: An Introduction to Fractional Derivatives, Fractional Differential Equations, to Methods of Their Solution and Some of Their Applications, vol. 198. Academic Press, New York (1998)MATH
19.
Zurück zum Zitat Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Elsevier, Amsterdam (2003)MATH Adams, R.A., Fournier, J.J.F.: Sobolev Spaces, 2nd edn. Elsevier, Amsterdam (2003)MATH
20.
Zurück zum Zitat Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements, Volume 159 of Applied Mathematical Sciences. Springer, New York (2004)CrossRef Ern, A., Guermond, J.-L.: Theory and Practice of Finite Elements, Volume 159 of Applied Mathematical Sciences. Springer, New York (2004)CrossRef
Metadaten
Titel
Variational formulation for fractional inhomogeneous boundary value problems
verfasst von
Taibai Fu
Zhoushun Zheng
Beiping Duan
Publikationsdatum
23.06.2020
Verlag
Springer Netherlands
Erschienen in
BIT Numerical Mathematics / Ausgabe 4/2020
Print ISSN: 0006-3835
Elektronische ISSN: 1572-9125
DOI
https://doi.org/10.1007/s10543-020-00812-5

Weitere Artikel der Ausgabe 4/2020

BIT Numerical Mathematics 4/2020 Zur Ausgabe

Premium Partner