Skip to main content
Erschienen in: Soft Computing 8/2013

01.08.2013 | Focus

Verified distance computation between non-convex superquadrics using hierarchical space decomposition structures

verfasst von: Stefan Kiel, Wolfram Luther, Eva Dyllong

Erschienen in: Soft Computing | Ausgabe 8/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Verified distance computation is an important task in various application domains. In some domains a proof of correctness is crucial. In this paper, we show how we can apply the methods provided by our uniform framework for verified geometric computations to derive verified bounds on the distance between non-convex objects. The framework features a layered structure enabling the algorithm to run independently whether the objects are described by implicit functions or parametric ones or by polyhedrons. The approach is based on the use of adaptively constructed hierarchical decompositions of the models. As a practical example we use various scenarios occurring in automatic surgery assistance systems for total hip replacement (THR). To ensure that an implant selected by the system fits into the patient’s femoral shaft, we have to derive verified bounds on the distance between them. In this case, the models are either superquadrics or polyhedrons, both of which can be non-convex We first show how to increase the enclosure quality of implicit objects by incorporating interval contractors into the hierarchical space decomposition. Next, we describe the construction of a decomposition structure for parametric objects. After that, we present an improvement of the case selector for computing the distance between interval tree nodes, yielding tighter results. We also show how to integrate surface normals into the algorithm if first-order information is available and how to accelerate the solving process by incorporating information gained by non-verified floating-point solvers. Finally, we provide numerical results for all distance query types occurring during the THR procedure and examine whether it is advisable to perform the computation on the implicit model or on the parametric one if both are available. Further numerical results are presented for test cases involving contractors in the decomposition structures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
f(xyz) = x 500 + y 500 + z 500 − 1.
 
2
f(xyz) = x 4 + y 4 + z 4 − x 2 − y 2 − z 2 + 0.5.
 
3
f(xyz) = (x 2 + y 2 + z 2 + 2y − 1) ((x 2 + y 2 + z 2 − 2y − 1)2 − 8z 2) + 16xz(x 2 + y 2 + z 2 − 2y − 1)).
 
4
\(f(x,y,z) = 2-\cos(x+\alpha y)+\cos(x-\alpha y)+\cos(y+\alpha z)+\cos(y- \alpha z)+\cos(z+\alpha x)+\cos(z- \alpha x) \mathrm{\ with\ } \alpha = 1.61803.\)
 
Literatur
Zurück zum Zitat Alefeld G, Herzberger J (1983) Introduction to interval computations. Academic Press, New York Alefeld G, Herzberger J (1983) Introduction to interval computations. Academic Press, New York
Zurück zum Zitat Araya I, Trombettoni G, Neveu B (2010) Exploiting monotonicity in interval constraint propagation. In: AAAI Araya I, Trombettoni G, Neveu B (2010) Exploiting monotonicity in interval constraint propagation. In: AAAI
Zurück zum Zitat Auer E, Chuev A, Cuypers R, Kiel S, Luther W (2011) Relevance of accurate and verified numerical algorithms for verification and validation in biomechanics. In: EUROMECH Colloquium 511, Ponta Delgada, Azores, Portugal Auer E, Chuev A, Cuypers R, Kiel S, Luther W (2011) Relevance of accurate and verified numerical algorithms for verification and validation in biomechanics. In: EUROMECH Colloquium 511, Ponta Delgada, Azores, Portugal
Zurück zum Zitat Auer E, Cuypers R, Luther W (2012) Process-oriented approach to verification in engineering. In: ICINCO (2), pp 513–518 Auer E, Cuypers R, Luther W (2012) Process-oriented approach to verification in engineering. In: ICINCO (2), pp 513–518
Zurück zum Zitat Barr A (1981) Superquadrics and angle-preserving transformations. Comput Graph Appl IEEE 1(1):11–23CrossRef Barr A (1981) Superquadrics and angle-preserving transformations. Comput Graph Appl IEEE 1(1):11–23CrossRef
Zurück zum Zitat Brunet P, Navazo I (1990) Solid representation and operation using extended octrees. ACM Trans Graph (TOG) 9(2):170–197MATHCrossRef Brunet P, Navazo I (1990) Solid representation and operation using extended octrees. ACM Trans Graph (TOG) 9(2):170–197MATHCrossRef
Zurück zum Zitat Bühler K (2002) Implicit linear interval estimations. In: Proceedings of the 18th spring conference on Computer graphics. ACM, New York, p 132 Bühler K (2002) Implicit linear interval estimations. In: Proceedings of the 18th spring conference on Computer graphics. ACM, New York, p 132
Zurück zum Zitat Bühler K, Dyllong E, Luther W (2004) Reliable distance and intersection computation using finite precision geometry. In: Alt R, Frommer A, Kearfott R, Luther W (eds) Numerical software with result verification. Lecture notes in computer science, vol 2991. Springer Berlin, pp 579–600 Bühler K, Dyllong E, Luther W (2004) Reliable distance and intersection computation using finite precision geometry. In: Alt R, Frommer A, Kearfott R, Luther W (eds) Numerical software with result verification. Lecture notes in computer science, vol 2991. Springer Berlin, pp 579–600
Zurück zum Zitat Carlbom I, Chakravarty I, Vanderschel D (1985) A hierarchical data structure for representing the spatial decomposition of 3-d objects. IEEE Comput Graph Appl 5(4):24–31CrossRef Carlbom I, Chakravarty I, Vanderschel D (1985) A hierarchical data structure for representing the spatial decomposition of 3-d objects. IEEE Comput Graph Appl 5(4):24–31CrossRef
Zurück zum Zitat Chakraborty N, Peng J, Akella S, Mitchell JE (2008) Proximity queries between convex objects: an interior point approach for implicit surfaces. IEEE Trans Rob 24(1):211–220CrossRef Chakraborty N, Peng J, Akella S, Mitchell JE (2008) Proximity queries between convex objects: an interior point approach for implicit surfaces. IEEE Trans Rob 24(1):211–220CrossRef
Zurück zum Zitat Cuypers R (2011) Geometrische Modellierung mit Superquadriken zur Optimierung skelettaler Diagnosesysteme. Logos Cuypers R (2011) Geometrische Modellierung mit Superquadriken zur Optimierung skelettaler Diagnosesysteme. Logos
Zurück zum Zitat Dyllong E, Grimm C (2007) Verified adaptive octree representations of constructive solid geometry objects. In: Simulation und Visualisierung, pp 223–235 Dyllong E, Grimm C (2007) Verified adaptive octree representations of constructive solid geometry objects. In: Simulation und Visualisierung, pp 223–235
Zurück zum Zitat Dyllong E, Kiel S (2010) Verified distance computation between convex hulls of octrees using interval optimization techniques. PAMM 10(1):651–652CrossRef Dyllong E, Kiel S (2010) Verified distance computation between convex hulls of octrees using interval optimization techniques. PAMM 10(1):651–652CrossRef
Zurück zum Zitat Dyllong E, Kiel S (2012) A comparison of verified distance computation between implicit objects using different arithmetics for range enclosure. Computing 94:281–296MathSciNetMATHCrossRef Dyllong E, Kiel S (2012) A comparison of verified distance computation between implicit objects using different arithmetics for range enclosure. Computing 94:281–296MathSciNetMATHCrossRef
Zurück zum Zitat Edelsbrunner H (1995) Algebraic decomposition of non-convex polyhedra. In: Proceedings. 36th annual symposium on foundations of computer science, pp 248–257 Edelsbrunner H (1995) Algebraic decomposition of non-convex polyhedra. In: Proceedings. 36th annual symposium on foundations of computer science, pp 248–257
Zurück zum Zitat de Figueiredo L, Stolfi J (1997) Self-validated numerical methods and applications. IMPA, Rio de Janeiro de Figueiredo L, Stolfi J (1997) Self-validated numerical methods and applications. IMPA, Rio de Janeiro
Zurück zum Zitat Gilbert E, Johnson D, Keerthi S (1988) A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE J Robot Autom 4(2):193–203CrossRef Gilbert E, Johnson D, Keerthi S (1988) A fast procedure for computing the distance between complex objects in three-dimensional space. IEEE J Robot Autom 4(2):193–203CrossRef
Zurück zum Zitat Hansen E, Walster GW (2004) Global optimization using interval analysis. Marcel Dekker, New York Hansen E, Walster GW (2004) Global optimization using interval analysis. Marcel Dekker, New York
Zurück zum Zitat Hofschuster W, Krämer W (2004) C-XSC 2.0 A C++ library for extended scientific computing. In: Alt R, Frommer A, Kearfott R, Luther W (eds) Numerical software with result verification. Lecture notes in computer science, vol 2991. Springer, Berlin, pp 259–276 Hofschuster W, Krämer W (2004) C-XSC 2.0 A C++ library for extended scientific computing. In: Alt R, Frommer A, Kearfott R, Luther W (eds) Numerical software with result verification. Lecture notes in computer science, vol 2991. Springer, Berlin, pp 259–276
Zurück zum Zitat Jaklič A, Leonardis A, Solina F (2000) Segmentation and recovery of superquadrics, vol 20. Springer, Amsterdam Jaklič A, Leonardis A, Solina F (2000) Segmentation and recovery of superquadrics, vol 20. Springer, Amsterdam
Zurück zum Zitat Kiel S (2010) Verified spatial subdivision of implicit objects using implicit linear interval estimations. In: Curves and surfaces, pp 402–415 Kiel S (2010) Verified spatial subdivision of implicit objects using implicit linear interval estimations. In: Curves and surfaces, pp 402–415
Zurück zum Zitat Kiel S (2012) YalAA: yet another library for affine arithmetic. Reliable Comput 16:114–129MathSciNet Kiel S (2012) YalAA: yet another library for affine arithmetic. Reliable Comput 16:114–129MathSciNet
Zurück zum Zitat Kockara S, Halic T, Bayrak C, Iqbal K, Rowe R (2009) Contact detection algorithms. J Comput 4(10):1053 Kockara S, Halic T, Bayrak C, Iqbal K, Rowe R (2009) Contact detection algorithms. J Comput 4(10):1053
Zurück zum Zitat Lennerz C, Schomer E (2002) Efficient distance computation for quadratic curves and surfaces. In: Geometric modeling and processing, 2002. Proceedings, pp 60–69 Lennerz C, Schomer E (2002) Efficient distance computation for quadratic curves and surfaces. In: Geometric modeling and processing, 2002. Proceedings, pp 60–69
Zurück zum Zitat Makino K, Berz M (2003) Taylor models and other validated functional inclusion methods. Int J Pure Appl Math 4(4):379–456MathSciNetMATH Makino K, Berz M (2003) Taylor models and other validated functional inclusion methods. Int J Pure Appl Math 4(4):379–456MathSciNetMATH
Zurück zum Zitat Mirtich B (1998) V-Clip: fast and robust polyhedral collision detection. ACM Trans Graph 17:177–208CrossRef Mirtich B (1998) V-Clip: fast and robust polyhedral collision detection. ACM Trans Graph 17:177–208CrossRef
Zurück zum Zitat Quinlan S (1994) Efficient distance computation between non-convex objects. In, Robot Autom Quinlan S (1994) Efficient distance computation between non-convex objects. In, Robot Autom
Zurück zum Zitat Samet H (2006) Foundations of multidimensional and metric data structures. Morgan Kaufmann, San Francisco Samet H (2006) Foundations of multidimensional and metric data structures. Morgan Kaufmann, San Francisco
Zurück zum Zitat Shapiro V (2007) Semi-analytic geometry with R-functions. ACTA Numer 16 Shapiro V (2007) Semi-analytic geometry with R-functions. ACTA Numer 16
Zurück zum Zitat Snyder JM, Woodbury AR, Fleischer K, Currin B, Barr AH (1993) Interval methods for multi-point collisions between time-dependent curved surfaces. In: Proceedings of the 20th annual conference on Computer graphics and interactive techniques, SIGGRAPH ’93. ACM, New York, pp 321–334 Snyder JM, Woodbury AR, Fleischer K, Currin B, Barr AH (1993) Interval methods for multi-point collisions between time-dependent curved surfaces. In: Proceedings of the 20th annual conference on Computer graphics and interactive techniques, SIGGRAPH ’93. ACM, New York, pp 321–334
Zurück zum Zitat Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106(1):25–57MathSciNetMATHCrossRef Wächter A, Biegler LT (2006) On the implementation of an interior-point filter line-search algorithm for large-scale nonlinear programming. Math Program 106(1):25–57MathSciNetMATHCrossRef
Metadaten
Titel
Verified distance computation between non-convex superquadrics using hierarchical space decomposition structures
verfasst von
Stefan Kiel
Wolfram Luther
Eva Dyllong
Publikationsdatum
01.08.2013
Verlag
Springer Berlin Heidelberg
Erschienen in
Soft Computing / Ausgabe 8/2013
Print ISSN: 1432-7643
Elektronische ISSN: 1433-7479
DOI
https://doi.org/10.1007/s00500-013-1005-y

Weitere Artikel der Ausgabe 8/2013

Soft Computing 8/2013 Zur Ausgabe