Skip to main content

2017 | OriginalPaper | Buchkapitel

Visual Cue-Guided Rat Cyborg

verfasst von : Yueming Wang, Minlong Lu, Zhaohui Wu, Xiaoxiang Zheng, Gang Pan

Erschienen in: Brain-Computer Interface Research

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A rat robot is a type of animal robot in which an animal is connected to a machine system via a brain-computer interface (BCI). Electrical stimuli can be generated by the machine system and delivered to the animal’s brain to control its behavior. However, most existing rat robots require that a human observes the environmental layout to guide navigation, which limits the applications of rat robots. This work incorporates object detection algorithms to a rat robot system to enable it to find ‘human-interesting’ objects, and then use these cues to guide its behaviors to perform automatic navigation. A miniature camera is mounted on the rat’s back to capture the scene in front of the rat. The video is transferred via a wireless module to a computer and we develop some object detection/identification algorithms to allow objects of interest to be found. Next, we make the rat robot perform a specific motion automatically in response to a detected object, such as turning left. A single stimulus does not allow the rat to perform a motion successfully. Inspired by the fact that humans usually give a series of stimuli to a rat robot, we develop a closed-loop model that issues a stimulus sequence automatically according to the state of the rat and the objects in front of it until the rat completes the motion successfully. Thus, the rat robot, which we refer to as a rat cyborg, is able to move according to the detected objects without requiring manual operations. The closed-loop stimulation model is evaluated in experiments, which demonstrate that our rat cyborg can accomplish human-specified navigation automatically.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bin G, Gao X, Wang Y, Hong B, Gao S (2009) VEP-based brain-computer interfaces: time, frequency, and code modulations [research frontier]. IEEE Comput Intell Mag 4(4):22–26CrossRef Bin G, Gao X, Wang Y, Hong B, Gao S (2009) VEP-based brain-computer interfaces: time, frequency, and code modulations [research frontier]. IEEE Comput Intell Mag 4(4):22–26CrossRef
2.
Zurück zum Zitat Wolpaw J, Wolpaw EW (2012) Brain-computer interfaces: principles and practice. Oxford University Press Wolpaw J, Wolpaw EW (2012) Brain-computer interfaces: principles and practice. Oxford University Press
3.
Zurück zum Zitat Holzer R, Shimoyama I (1997) Locomotion control of a bio-robotic system via electric stimulation. IEEE/RSJ Int Conf Intell Robots Syst 3:1514–1519 Holzer R, Shimoyama I (1997) Locomotion control of a bio-robotic system via electric stimulation. IEEE/RSJ Int Conf Intell Robots Syst 3:1514–1519
4.
Zurück zum Zitat Paxinos G (2004) The rat nervous system. Academic Press Paxinos G (2004) The rat nervous system. Academic Press
5.
Zurück zum Zitat Feng Z, Chen W, Ye X, Zhang S, Zheng X, Wang P, Jiang J, Jin L, Xu Z, Liu C, Liu F, Luo J, Zhuang Y, Zheng X (2007) A remote control training system for rat navigation in complicated environment. J Zhejiang Univ Sci A 8(2):323–330CrossRef Feng Z, Chen W, Ye X, Zhang S, Zheng X, Wang P, Jiang J, Jin L, Xu Z, Liu C, Liu F, Luo J, Zhuang Y, Zheng X (2007) A remote control training system for rat navigation in complicated environment. J Zhejiang Univ Sci A 8(2):323–330CrossRef
6.
Zurück zum Zitat Talwar S, Xu S, Hawley E, Weiss S, Moxon K, Chapin J (2002) Behavioural neuroscience: rat navigation guided by remote control. Nature 417(6884):37–38CrossRef Talwar S, Xu S, Hawley E, Weiss S, Moxon K, Chapin J (2002) Behavioural neuroscience: rat navigation guided by remote control. Nature 417(6884):37–38CrossRef
7.
Zurück zum Zitat Li Z, Hayashibe M, Fattal C, Guiraud D (2014) Muscle fatigue tracking with evoked EMG via recurrent neural network: Toward personalized neuroprosthetics. IEEE Comput Intell Mag 9(2):38–46CrossRef Li Z, Hayashibe M, Fattal C, Guiraud D (2014) Muscle fatigue tracking with evoked EMG via recurrent neural network: Toward personalized neuroprosthetics. IEEE Comput Intell Mag 9(2):38–46CrossRef
8.
Zurück zum Zitat Wu Z, Pan G (2013) Smartshadow: models and methods for pervasive computing. Springer Wu Z, Pan G (2013) Smartshadow: models and methods for pervasive computing. Springer
9.
Zurück zum Zitat Wu Z, Pan G, Zheng N (2013) Cyborg intelligence. IEEE Intell Syst 28(5):31–33CrossRef Wu Z, Pan G, Zheng N (2013) Cyborg intelligence. IEEE Intell Syst 28(5):31–33CrossRef
10.
Zurück zum Zitat Wu Z, Pan G, Principe JC, Cichocki A (2014) Cyborg intelligence: Towards bio-machine intelligent systems. IEEE Intell Syst 29(6):2–4CrossRef Wu Z, Pan G, Principe JC, Cichocki A (2014) Cyborg intelligence: Towards bio-machine intelligent systems. IEEE Intell Syst 29(6):2–4CrossRef
11.
Zurück zum Zitat Wu Z, Yang Y, Xia B, Zhang Z, Pan G (2014) Speech interaction with a rat. Chin Sci Bull 59(28):3579–3584CrossRef Wu Z, Yang Y, Xia B, Zhang Z, Pan G (2014) Speech interaction with a rat. Chin Sci Bull 59(28):3579–3584CrossRef
12.
Zurück zum Zitat Wu Z, Zhou Y, Shi Z, Zhang C, Li G, Zheng X, Zheng N, Pan G (2016) Cyborg intelligence: recent progresses and future directions. IEEE Intell Syst 31(6):44–50CrossRef Wu Z, Zhou Y, Shi Z, Zhang C, Li G, Zheng X, Zheng N, Pan G (2016) Cyborg intelligence: recent progresses and future directions. IEEE Intell Syst 31(6):44–50CrossRef
13.
Zurück zum Zitat Yu Y, Pan G, Gong Y, Xu K, Zheng N, Hua W, Zheng X, Wu Z (2016) Intelligence-augmented rat cyborgs in maze solving. PLoS ONE 11(2):e0147754CrossRef Yu Y, Pan G, Gong Y, Xu K, Zheng N, Hua W, Zheng X, Wu Z (2016) Intelligence-augmented rat cyborgs in maze solving. PLoS ONE 11(2):e0147754CrossRef
14.
Zurück zum Zitat Wang Y, Lu M, Wu Z, Tian L, Xu K, Zheng X, Pan G (2015) Visual cue-guided rat cyborg for automatic navigation. IEEE Comput Intell Mag 10(2):42–52CrossRef Wang Y, Lu M, Wu Z, Tian L, Xu K, Zheng X, Pan G (2015) Visual cue-guided rat cyborg for automatic navigation. IEEE Comput Intell Mag 10(2):42–52CrossRef
15.
Zurück zum Zitat Hermer-Vazquez L, Hermer-Vazquez R, Rybinnik I, Greebel G, Keller R, Xu S, Chapin J (2005) Rapid learning and flexible memory in “habit” tasks in rats trained with brain stimulation reward. Physiol Behav 84(5):753–759CrossRef Hermer-Vazquez L, Hermer-Vazquez R, Rybinnik I, Greebel G, Keller R, Xu S, Chapin J (2005) Rapid learning and flexible memory in “habit” tasks in rats trained with brain stimulation reward. Physiol Behav 84(5):753–759CrossRef
16.
Zurück zum Zitat Reynolds J, Hyland B, Wickens J (2001) A cellular mechanism of reward-related learning. Nature 413(6851):67–70CrossRef Reynolds J, Hyland B, Wickens J (2001) A cellular mechanism of reward-related learning. Nature 413(6851):67–70CrossRef
17.
Zurück zum Zitat Romo R, Hernández A, Zainos A, Brody C, Lemus L (2000) Sensing without touching: psychophysical performance based on cortical microstimulation. Neuron 26(1):273–278CrossRef Romo R, Hernández A, Zainos A, Brody C, Lemus L (2000) Sensing without touching: psychophysical performance based on cortical microstimulation. Neuron 26(1):273–278CrossRef
18.
Zurück zum Zitat Schultz W (2002) Getting formal with dopamine and reward. Neuron 36(2):241–263CrossRef Schultz W (2002) Getting formal with dopamine and reward. Neuron 36(2):241–263CrossRef
19.
Zurück zum Zitat Wang Y, Su X, Huai R, Wang M (2006) A telemetry navigation system for animal-robots. Robot 28(2):183–186 Wang Y, Su X, Huai R, Wang M (2006) A telemetry navigation system for animal-robots. Robot 28(2):183–186
20.
Zurück zum Zitat Bourdev L, Brandt J (2005) Robust object detection via soft cascade. IEEE Comput Soc Conf Comput Vis Pattern Recognit 2:236–243 Bourdev L, Brandt J (2005) Robust object detection via soft cascade. IEEE Comput Soc Conf Comput Vis Pattern Recognit 2:236–243
21.
Zurück zum Zitat Harris C, Stephens M (1988) A combined corner and edge detector. In: Alvey vision conference, vol. 15. p 50 Harris C, Stephens M (1988) A combined corner and edge detector. In: Alvey vision conference, vol. 15. p 50
22.
Zurück zum Zitat Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. IJCAI 81:674–679 Lucas BD, Kanade T (1981) An iterative image registration technique with an application to stereo vision. IJCAI 81:674–679
Metadaten
Titel
Visual Cue-Guided Rat Cyborg
verfasst von
Yueming Wang
Minlong Lu
Zhaohui Wu
Xiaoxiang Zheng
Gang Pan
Copyright-Jahr
2017
DOI
https://doi.org/10.1007/978-3-319-64373-1_7

Neuer Inhalt