Skip to main content
Erschienen in: Electrical Engineering 6/2022

01.09.2022 | Original Paper

Voltage reduction strategy for VI droop-based stand-alone microgrid considering demand side management capability

Erschienen in: Electrical Engineering | Ausgabe 6/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The classical droop method is widely used in AC microgrid (MG) for sharing load among distributed generations. Apart from interlinking the DC sources, the voltage source inverters control the power flow from renewable energy sources. Thus, they contribute toward the demand side management (DSM) by employing the voltage reduction method (VRM). The VRM is widely utilized in the distribution system of the grid network, its concern is to reduce the voltage in a suitable manner so as to maintain the voltage within the acceptable limits, leading to power savings. However, the application of VRM in the stand-alone MG is very scarce. Thus, this paper attempts to apply VRM so as to achieve not only the benefits pertaining to voltage control but also power savings from DSM. The voltage–current (V–I) droop characteristics are of paramount importance for DSM using VRM to increase the number of consumers during high demand of electrical energy. One of the important contributions is modification of the Pf droop control to maintain the frequency of the MG within the permissible limit while applying VRM. In addition, the behavior of three-phase to ground fault is being investigated and competency of the control algorithm is validated through implementation on 5 bus stand-alone microgrid system and further, it is tested on IEEE 14 bus test system. The efficacy of the proposed approach is established through the comparison of the results with those for classical voltage and frequency-based droop schemes bereft of communication ability. The control mechanism has also been validated in real-time using schematic editor of Typhoon virtual HIL 402.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Kennedy J, Ciufo P, Agalgaonkar A (2016) A review of protection systems for distribution networks embedded with renewable generation. Renew Sustain Energy Rev 58:1308–1317CrossRef Kennedy J, Ciufo P, Agalgaonkar A (2016) A review of protection systems for distribution networks embedded with renewable generation. Renew Sustain Energy Rev 58:1308–1317CrossRef
2.
Zurück zum Zitat Arboleya P, Diaz D, Guerrero J, Garcia P, Briz F, Gonzalez-Moran C, Aleixandre JG (2010) An improved control scheme based in droop characteristic for microgrid converters. Electric Power Syst Res 80:1215–1221CrossRef Arboleya P, Diaz D, Guerrero J, Garcia P, Briz F, Gonzalez-Moran C, Aleixandre JG (2010) An improved control scheme based in droop characteristic for microgrid converters. Electric Power Syst Res 80:1215–1221CrossRef
3.
Zurück zum Zitat Jha SK, Kumar D (2018) Robust decentralized control of parallel type autonomous microgrid structure. In: 2018 International conference on applied electromagnetics, signal processing and communication (AESPC), Bhubaneswar, India, pp 1–6 Jha SK, Kumar D (2018) Robust decentralized control of parallel type autonomous microgrid structure. In: 2018 International conference on applied electromagnetics, signal processing and communication (AESPC), Bhubaneswar, India, pp 1–6
4.
5.
Zurück zum Zitat Hatziargyriou N, Asano H, Iravani R, Marnay C (2007) Microgrids. IEEE Power and Energy Mag 5(4):78–94CrossRef Hatziargyriou N, Asano H, Iravani R, Marnay C (2007) Microgrids. IEEE Power and Energy Mag 5(4):78–94CrossRef
8.
Zurück zum Zitat Olivares DE et al (2014) Trends in microgrid control. IEEE Trans Smart Grid 5(4):1905–1919CrossRef Olivares DE et al (2014) Trends in microgrid control. IEEE Trans Smart Grid 5(4):1905–1919CrossRef
9.
Zurück zum Zitat Pogaku N, Prodanovic M, Green TC (2007) Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans Power Electron 22(2):613–625CrossRef Pogaku N, Prodanovic M, Green TC (2007) Modeling, analysis and testing of autonomous operation of an inverter-based microgrid. IEEE Trans Power Electron 22(2):613–625CrossRef
10.
Zurück zum Zitat Kahrobaeian A, Mohamed YARI (2014) Analysis and mitigation of low-frequency instabilities in autonomous medium-voltage converterbased microgrids with dynamic loads. IEEE Trans Ind Electron 61(4):1643–1658CrossRef Kahrobaeian A, Mohamed YARI (2014) Analysis and mitigation of low-frequency instabilities in autonomous medium-voltage converterbased microgrids with dynamic loads. IEEE Trans Ind Electron 61(4):1643–1658CrossRef
11.
Zurück zum Zitat Pogaku N, Green T (2006) Harmonic mitigation throughout a distribution system: a distributed-generator-based solution. IEE Proc Gener Transm Distrib 153(3):350–358CrossRef Pogaku N, Green T (2006) Harmonic mitigation throughout a distribution system: a distributed-generator-based solution. IEE Proc Gener Transm Distrib 153(3):350–358CrossRef
12.
Zurück zum Zitat Yang S, Wang P, Tang Y, Zhang L (2017) Explicit phase lead filter design in repetitive control for voltage harmonic mitigation of vsi-based islanded microgrids. IEEE Trans Ind Electron 64(1):817–826CrossRef Yang S, Wang P, Tang Y, Zhang L (2017) Explicit phase lead filter design in repetitive control for voltage harmonic mitigation of vsi-based islanded microgrids. IEEE Trans Ind Electron 64(1):817–826CrossRef
13.
Zurück zum Zitat Sen PK, Lee KH (2016) Conservation voltage reduction technique: an application guideline for smarter grid. IEEE Trans Ind Appl 52(3):2122–2128CrossRef Sen PK, Lee KH (2016) Conservation voltage reduction technique: an application guideline for smarter grid. IEEE Trans Ind Appl 52(3):2122–2128CrossRef
14.
Zurück zum Zitat Scalley BR, Kasten DG (1981) The effects of distribution voltage reduction on power and energy consumption. IEEE Trans Educ 24(3):210–216CrossRef Scalley BR, Kasten DG (1981) The effects of distribution voltage reduction on power and energy consumption. IEEE Trans Educ 24(3):210–216CrossRef
15.
Zurück zum Zitat Gheydi M, Nouri A, Ghadimi N Planning in microgrids with conservation of voltage reduction. IEEE Syst J (in press) Gheydi M, Nouri A, Ghadimi N Planning in microgrids with conservation of voltage reduction. IEEE Syst J (in press)
16.
Zurück zum Zitat Manbachi M, Nasri M, Shahabi B, Farhangi H, Palizban A, Arzanpour S, Moallem M, Lee DC (2014) Real-time adaptive vvo/cvr topology using multi-agent system and iec 61850-based communication protocol. IEEE Trans Sustain Energy 5(2):587–597CrossRef Manbachi M, Nasri M, Shahabi B, Farhangi H, Palizban A, Arzanpour S, Moallem M, Lee DC (2014) Real-time adaptive vvo/cvr topology using multi-agent system and iec 61850-based communication protocol. IEEE Trans Sustain Energy 5(2):587–597CrossRef
17.
Zurück zum Zitat Farrokhabadi M, Canizares CA, Bhattacharya K (2015) Frequency control in isolated/islanded microgrids through voltage regulation. IEEE Trans Smart Grid 99:1–10 Farrokhabadi M, Canizares CA, Bhattacharya K (2015) Frequency control in isolated/islanded microgrids through voltage regulation. IEEE Trans Smart Grid 99:1–10
18.
Zurück zum Zitat Wang Z, Chen B, Wang J, Begovic M (2015) Stochastic dg placement for conservation voltage reduction based on multiple replications procedure. IEEE Trans Power Del 30(3):1039–1047CrossRef Wang Z, Chen B, Wang J, Begovic M (2015) Stochastic dg placement for conservation voltage reduction based on multiple replications procedure. IEEE Trans Power Del 30(3):1039–1047CrossRef
19.
Zurück zum Zitat Wang Z, Wang J (2014) Review on implementation and assessment of conservation voltage reduction. IEEE Trans Power Syst 29(3):1306–1315CrossRef Wang Z, Wang J (2014) Review on implementation and assessment of conservation voltage reduction. IEEE Trans Power Syst 29(3):1306–1315CrossRef
20.
Zurück zum Zitat Singh R, Tuffner F, Fuller J, Schneider K (2011) Effects of distributed energy resources on conservation voltage reduction (cvr). In: 2011 IEEE power and energysociety general meeting, pp 1–7 Singh R, Tuffner F, Fuller J, Schneider K (2011) Effects of distributed energy resources on conservation voltage reduction (cvr). In: 2011 IEEE power and energysociety general meeting, pp 1–7
21.
Zurück zum Zitat Khorsandi A, Ashourloo M, Mokhtari H, Iravani R (2016) Automatic droop control for a low voltage dc microgrid. Gener Transm Distrib IET 10(1):41–47CrossRef Khorsandi A, Ashourloo M, Mokhtari H, Iravani R (2016) Automatic droop control for a low voltage dc microgrid. Gener Transm Distrib IET 10(1):41–47CrossRef
22.
Zurück zum Zitat Moussa H, Shahin A, Martin J, Pierfederici S, Moubayed N (2018) Optimal angle droop for power sharing enhancement with stability improvement in islanded microgrids. IEEE Trans Smart Grid 9(5):5014–5026CrossRef Moussa H, Shahin A, Martin J, Pierfederici S, Moubayed N (2018) Optimal angle droop for power sharing enhancement with stability improvement in islanded microgrids. IEEE Trans Smart Grid 9(5):5014–5026CrossRef
23.
Zurück zum Zitat Acharya S, Moursi MSE, Al-Hinai A (2018) Coordinated frequency control strategy for an islanded microgrid with demand side management capability. IEEE Trans Energy Convers 33(2):639–651CrossRef Acharya S, Moursi MSE, Al-Hinai A (2018) Coordinated frequency control strategy for an islanded microgrid with demand side management capability. IEEE Trans Energy Convers 33(2):639–651CrossRef
24.
Zurück zum Zitat Jha SK, Kumar D, Lehtonen M (2021) Modified V–I droop based adaptive vector control scheme for demand side management in a stand-alone microgrid. Int J Electr Power Energy Syst 130:106950CrossRef Jha SK, Kumar D, Lehtonen M (2021) Modified V–I droop based adaptive vector control scheme for demand side management in a stand-alone microgrid. Int J Electr Power Energy Syst 130:106950CrossRef
25.
26.
Zurück zum Zitat Barklund E, Pogaku N, Prodanovic M, Hernandez-Aramburo C, Green TC (2008) Energy management in autonomous microgrid using stability-constrained droop control of inverters. IEEE Trans Power Electron 23:2346–2352CrossRef Barklund E, Pogaku N, Prodanovic M, Hernandez-Aramburo C, Green TC (2008) Energy management in autonomous microgrid using stability-constrained droop control of inverters. IEEE Trans Power Electron 23:2346–2352CrossRef
27.
Zurück zum Zitat Xu Y, Sun H, Gu W, Xu Y, Li Z (2019) Optimal distributed control for secondary frequency and voltage regulation in an islanded microgrid. IEEE Trans Ind Inf 15(1):225–235CrossRef Xu Y, Sun H, Gu W, Xu Y, Li Z (2019) Optimal distributed control for secondary frequency and voltage regulation in an islanded microgrid. IEEE Trans Ind Inf 15(1):225–235CrossRef
28.
Zurück zum Zitat Delghavi MB, Yazdani A (2011) An adaptive feedforward compensation for stability enhancement in droop-controlled inverter-based microgrids. IEEE Trans Power Deliv 26:1764–1773CrossRef Delghavi MB, Yazdani A (2011) An adaptive feedforward compensation for stability enhancement in droop-controlled inverter-based microgrids. IEEE Trans Power Deliv 26:1764–1773CrossRef
29.
Zurück zum Zitat Kim YS, Kim ES, Moon SI (2017) Distributed generation control method for active power sharing and self-frequency recovery in an islanded microgrid. IEEE Trans Power Syst 32(1):544–551CrossRef Kim YS, Kim ES, Moon SI (2017) Distributed generation control method for active power sharing and self-frequency recovery in an islanded microgrid. IEEE Trans Power Syst 32(1):544–551CrossRef
30.
Zurück zum Zitat Golsorkhi M, Lu D (2015) A control method for inverter-based islanded microgrids based on V-I droop characteristics. IEEE Trans Power Del 30(3):1196–1204CrossRef Golsorkhi M, Lu D (2015) A control method for inverter-based islanded microgrids based on V-I droop characteristics. IEEE Trans Power Del 30(3):1196–1204CrossRef
31.
Zurück zum Zitat (2011) IEEE guide for design, operation, and integration of distributed resource island systems with electric power systems. IEEE Std 1547.4–2011, pp 1–54 (2011) IEEE guide for design, operation, and integration of distributed resource island systems with electric power systems. IEEE Std 1547.4–2011, pp 1–54
32.
Zurück zum Zitat Mohamed Y-R, El-Saadany E (2008) Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids. IEEE Trans Power Electron 23(6):2806–2816CrossRef Mohamed Y-R, El-Saadany E (2008) Adaptive decentralized droop controller to preserve power sharing stability of paralleled inverters in distributed generation microgrids. IEEE Trans Power Electron 23(6):2806–2816CrossRef
Metadaten
Titel
Voltage reduction strategy for V–I droop-based stand-alone microgrid considering demand side management capability
Publikationsdatum
01.09.2022
Erschienen in
Electrical Engineering / Ausgabe 6/2022
Print ISSN: 0948-7921
Elektronische ISSN: 1432-0487
DOI
https://doi.org/10.1007/s00202-022-01632-2

Weitere Artikel der Ausgabe 6/2022

Electrical Engineering 6/2022 Zur Ausgabe

Neuer Inhalt