Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 4/2010

01.04.2010 | Brief Note

Volume preserving nonlinear density filter based on heaviside functions

verfasst von: Shengli Xu, Yuanwu Cai, Gengdong Cheng

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 4/2010

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To prevent numerical instabilities and ensure manufacturability, restrictions should be applied in topology optimization. In this paper, a volume preserving density filter based on Heaviside functions is presented. Different from earlier Heaviside density filters, this filter is volume preserving, which ensures efficiency and stability in optimization. The new filter is compared with four other filters through a compliance minimization problem.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MATHCrossRefMathSciNet Allaire G, Jouve F, Toader AM (2004) Structural optimization using sensitivity analysis and a level-set method. J Comput Phys 194(1):363–393MATHCrossRefMathSciNet
Zurück zum Zitat Ambrosio L, Buttazzo G (1993) An optimal design problem with perimeter penalization. Calc Var Partial Differ Equ 1(1):55–69MATHCrossRefMathSciNet Ambrosio L, Buttazzo G (1993) An optimal design problem with perimeter penalization. Calc Var Partial Differ Equ 1(1):55–69MATHCrossRefMathSciNet
Zurück zum Zitat Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidiscipl Optim 1(4):193–202 Bendsøe MP (1989) Optimal shape design as a material distribution problem. Struct Multidiscipl Optim 1(4):193–202
Zurück zum Zitat Bendsøe MP (1995) Optimization of structural topology, shape and material. Springer, New York Bendsøe MP (1995) Optimization of structural topology, shape and material. Springer, New York
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in optimal design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRef Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in optimal design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224CrossRef
Zurück zum Zitat Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM, Control Optim Calc Var 9:19–48MATHMathSciNet Bourdin B, Chambolle A (2003) Design-dependent loads in topology optimization. ESAIM, Control Optim Calc Var 9:19–48MATHMathSciNet
Zurück zum Zitat Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26-27):3443–3459MATHCrossRef Bruns TE, Tortorelli DA (2001) Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26-27):3443–3459MATHCrossRef
Zurück zum Zitat Cheng KT, Olhoff N (1981) An investigation concerning optimal design of solid elastic plates. Int J Solids Struct 17(3):305–323MATHCrossRefMathSciNet Cheng KT, Olhoff N (1981) An investigation concerning optimal design of solid elastic plates. Int J Solids Struct 17(3):305–323MATHCrossRefMathSciNet
Zurück zum Zitat Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254MATHCrossRef Guest JK, Prévost JH, Belytschko T (2004) Achieving minimum length scale in topology optimization using nodal design variables and projection functions. Int J Numer Methods Eng 61(2):238–254MATHCrossRef
Zurück zum Zitat Guo X, Gu YX (2004) A new density-stiffness interpolation scheme for topology optimization of continuum structures. Eng Comput 21(1):9–22MATHCrossRef Guo X, Gu YX (2004) A new density-stiffness interpolation scheme for topology optimization of continuum structures. Eng Comput 21(1):9–22MATHCrossRef
Zurück zum Zitat Haber RB, Jog CS, Bendsøe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Multidiscipl Optim 11(1–2):1–12 Haber RB, Jog CS, Bendsøe MP (1996) A new approach to variable-topology shape design using a constraint on perimeter. Struct Multidiscipl Optim 11(1–2):1–12
Zurück zum Zitat Kim YY, Yoon GH (2000) Multi-resolution multi-scale topology optimization—a new paradigm. Int J Solids Struct 37(39):5529–5559MATHCrossRefMathSciNet Kim YY, Yoon GH (2000) Multi-resolution multi-scale topology optimization—a new paradigm. Int J Solids Struct 37(39):5529–5559MATHCrossRefMathSciNet
Zurück zum Zitat Niordson F (1983) Optimal design of plates with a constraint on the slope of the thickness function. Int J Solids Struct 19(2):141–151MATHCrossRefMathSciNet Niordson F (1983) Optimal design of plates with a constraint on the slope of the thickness function. Int J Solids Struct 19(2):141–151MATHCrossRefMathSciNet
Zurück zum Zitat Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528MATHCrossRefMathSciNet Sethian JA, Wiegmann A (2000) Structural boundary design via level set and immersed interface methods. J Comput Phys 163(2):489–528MATHCrossRefMathSciNet
Zurück zum Zitat Sigmund O (1994) Design of material structures using topology optimization. Phd thesis, Department of Solid Mechanics, Technical University of Denmark Sigmund O (1994) Design of material structures using topology optimization. Phd thesis, Department of Solid Mechanics, Technical University of Denmark
Zurück zum Zitat Sigmund O (2001) Design of multiphysics actuators using topology optimization—part ii: two-material structures. Comput Methods Appl Mech Eng 190(49-50):6605–6627CrossRef Sigmund O (2001) Design of multiphysics actuators using topology optimization—part ii: two-material structures. Comput Methods Appl Mech Eng 190(49-50):6605–6627CrossRef
Zurück zum Zitat Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscipl Optim 33(4–5):401–424CrossRef Sigmund O (2007) Morphology-based black and white filters for topology optimization. Struct Multidiscipl Optim 33(4–5):401–424CrossRef
Zurück zum Zitat Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multidiscipl Optim 16(1):68–75 Sigmund O, Petersson J (1998) Numerical instabilities in topology optimization: a survey on procedures dealing with checkerboards, mesh-dependencies and local minima. Struct Multidiscipl Optim 16(1):68–75
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373MATHCrossRefMathSciNet Svanberg K (1987) The method of moving asymptotes—a new method for structural optimization. Int J Numer Methods Eng 24:359–373MATHCrossRefMathSciNet
Zurück zum Zitat Wang MY, Wang S (2005) Bilateral filtering for structural topology optimization. Int J Numer Methods Eng 63(13):1911–1938MATHCrossRef Wang MY, Wang S (2005) Bilateral filtering for structural topology optimization. Int J Numer Methods Eng 63(13):1911–1938MATHCrossRef
Zurück zum Zitat Wang MY, Zhou S (2004) Phase field: a variational method for structural topology optimization. Comput Model Eng Sci 6(6):547–566MATHMathSciNet Wang MY, Zhou S (2004) Phase field: a variational method for structural topology optimization. Comput Model Eng Sci 6(6):547–566MATHMathSciNet
Zurück zum Zitat Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246MATHCrossRefMathSciNet Wang MY, Wang X, Guo D (2003) A level set method for structural topology optimization. Comput Methods Appl Mech Eng 192(1–2):227–246MATHCrossRefMathSciNet
Zurück zum Zitat Zhou M, Shyy YK, Thomas HL (2001) Checkerboard and minimum member size control in topology optimization. Struct Multidiscipl Optim 21(2):152–158CrossRef Zhou M, Shyy YK, Thomas HL (2001) Checkerboard and minimum member size control in topology optimization. Struct Multidiscipl Optim 21(2):152–158CrossRef
Metadaten
Titel
Volume preserving nonlinear density filter based on heaviside functions
verfasst von
Shengli Xu
Yuanwu Cai
Gengdong Cheng
Publikationsdatum
01.04.2010
Verlag
Springer-Verlag
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 4/2010
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-009-0452-7

Weitere Artikel der Ausgabe 4/2010

Structural and Multidisciplinary Optimization 4/2010 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.