Skip to main content

2021 | OriginalPaper | Buchkapitel

15. WAM-Based Hierarchical Control of Islanded AC Microgrids

verfasst von : E. S. N. Raju P, Trapti Jain

Erschienen in: Microgrids

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter presents a wide area measurement system (WAMS) based hierarchical control of islanded AC microgrids (IACMGs) with static and dynamic loads. The proposed WAMS-based hierarchical controller consists of a lower-level decentralized controller, for each inverter-interfaced distributed generation (IIDG) unit, accompanied by an upper-level multi-input-multi-output (MIMO) centralized controller. Furthermore, this chapter also analyzes the impact of signal transmission time delays on the performance of the proposed WAMS-based hierarchical controller by performing simulation study on its application to the typical IACMG system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Parhizi, S., Lotfi; H., Khodaei, A., & Bahramirad. S., (2015). State of the art in research on microgrids: A review. IEEE Access, 3, 890–925.CrossRef Parhizi, S., Lotfi; H., Khodaei, A., & Bahramirad. S., (2015). State of the art in research on microgrids: A review. IEEE Access, 3, 890–925.CrossRef
2.
Zurück zum Zitat Chowdhury, S., Chowdhury, S. P., & Crossley, P. (2009). Microgrids and active distribution networks. London: Institution of Engineering and Technology.CrossRef Chowdhury, S., Chowdhury, S. P., & Crossley, P. (2009). Microgrids and active distribution networks. London: Institution of Engineering and Technology.CrossRef
3.
Zurück zum Zitat Kundur, P. (1994). Power system stability and control. New York: McGrawHill. Kundur, P. (1994). Power system stability and control. New York: McGrawHill.
4.
Zurück zum Zitat Kundur, P., et al. (2004). Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Transactions on Power Systems, 19(3), 1387–1401.CrossRef Kundur, P., et al. (2004). Definition and classification of power system stability IEEE/CIGRE joint task force on stability terms and definitions. IEEE Transactions on Power Systems, 19(3), 1387–1401.CrossRef
5.
Zurück zum Zitat Majumder, R. (2010). Some aspects of stability in microgrids. IEEE Transactions on Power Systems, 28(3), 3242–3253. Majumder, R. (2010). Some aspects of stability in microgrids. IEEE Transactions on Power Systems, 28(3), 3242–3253.
6.
Zurück zum Zitat Xinhe, C., Wei, P., & Xisheng, T. (2010). Transient stability analyses of micro-grids with multiple distributed generations. In Proceedings of the International Conference Power System Technology (POWERCON). Xinhe, C., Wei, P., & Xisheng, T. (2010). Transient stability analyses of micro-grids with multiple distributed generations. In Proceedings of the International Conference Power System Technology (POWERCON).
7.
Zurück zum Zitat Narendra, K. S., & Balakrishnan, J. (1994). A common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE Transactions on Industrial Electronics, 39(12), 2469–2471.MathSciNetMATH Narendra, K. S., & Balakrishnan, J. (1994). A common Lyapunov function for stable LTI systems with commuting A-matrices. IEEE Transactions on Industrial Electronics, 39(12), 2469–2471.MathSciNetMATH
8.
Zurück zum Zitat Majumder, R. (2013). Reactive power compensation in single-phase operation of microgrid. IEEE Transactions on Industrial Electronics, 60(4), 1403–1416.CrossRef Majumder, R. (2013). Reactive power compensation in single-phase operation of microgrid. IEEE Transactions on Industrial Electronics, 60(4), 1403–1416.CrossRef
9.
Zurück zum Zitat Olivares, D. E., et al. (2014). Trends in microgrid control. IEEE Transactions on Smart Grid, 5(4), 905–1919. Olivares, D. E., et al. (2014). Trends in microgrid control. IEEE Transactions on Smart Grid, 5(4), 905–1919.
10.
Zurück zum Zitat Liang, H., Choi, B. J., Zhuang, W., & Shen, X. (2013). Stability enhancement of decentralized inverter control through wireless communications in microgrids. IEEE Transactions on Smart Grid, 4(1), 21–331.CrossRef Liang, H., Choi, B. J., Zhuang, W., & Shen, X. (2013). Stability enhancement of decentralized inverter control through wireless communications in microgrids. IEEE Transactions on Smart Grid, 4(1), 21–331.CrossRef
11.
Zurück zum Zitat Kahrobaeian, A., & Mohamed, Y. A.-R. I. (2014). Analysis and mitigation of low-frequency instabilities in autonomous medium-voltage converter-based microgrids with dynamic loads. IEEE Transactions on Industrial Electronics, 61(4), 1643–1658.CrossRef Kahrobaeian, A., & Mohamed, Y. A.-R. I. (2014). Analysis and mitigation of low-frequency instabilities in autonomous medium-voltage converter-based microgrids with dynamic loads. IEEE Transactions on Industrial Electronics, 61(4), 1643–1658.CrossRef
12.
Zurück zum Zitat Ovalle, A., Ramos, G., Bacha, S., Hably, A., & Rumeau, A. (2015). Decentralized control of voltage source converters in microgrids based on the application of instantaneous power theory. IEEE Transactions on Industrial Electronics, 62(2), 1152–1162.CrossRef Ovalle, A., Ramos, G., Bacha, S., Hably, A., & Rumeau, A. (2015). Decentralized control of voltage source converters in microgrids based on the application of instantaneous power theory. IEEE Transactions on Industrial Electronics, 62(2), 1152–1162.CrossRef
13.
Zurück zum Zitat Raju, P. E. S. N., & Jain, T. (2017). Optimal decentralized supplementary inverter control loop to mitigate instability in an islanded microgrid with active and passive loads. International Journal of Emerging Electric Power Systems, 18(01). Raju, P. E. S. N., & Jain, T. (2017). Optimal decentralized supplementary inverter control loop to mitigate instability in an islanded microgrid with active and passive loads. International Journal of Emerging Electric Power Systems, 18(01).
14.
Zurück zum Zitat Raju, P. E. S. N., & Jain, T. (2017). Robust optimal centralized controller to mitigate the small signal instability in an islanded inverter based microgrid with active and passive loads. International Journal of Electrical Power & Energy Systems, 90, 225–236.CrossRef Raju, P. E. S. N., & Jain, T. (2017). Robust optimal centralized controller to mitigate the small signal instability in an islanded inverter based microgrid with active and passive loads. International Journal of Electrical Power & Energy Systems, 90, 225–236.CrossRef
15.
Zurück zum Zitat Guo, F., Wen, C., Mao, J., & Song, Y. D. (2015). Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids. IEEE Transactions on Industrial Electronics, 62(7), 4355–4364.CrossRef Guo, F., Wen, C., Mao, J., & Song, Y. D. (2015). Distributed secondary voltage and frequency restoration control of droop-controlled inverter-based microgrids. IEEE Transactions on Industrial Electronics, 62(7), 4355–4364.CrossRef
16.
Zurück zum Zitat Wang, Y., Wang, X., Chen, Z., & Blaabjerg, F. (2017). Distributed optimal control of reactive power and voltage in islanded microgrids. IEEE Transactions on Industrial Electronics, 53(01), 340–349. Wang, Y., Wang, X., Chen, Z., & Blaabjerg, F. (2017). Distributed optimal control of reactive power and voltage in islanded microgrids. IEEE Transactions on Industrial Electronics, 53(01), 340–349.
17.
Zurück zum Zitat Zhao, Z., Yang, P., Guerrero, J. M., Xu, Z., & Green, T. C. (2016). Multiple-time-scales hierarchical frequency stability control strategy of medium-voltage isolated microgrid. IEEE Transactions on Power Electronics, 31(8), 5974–5991.CrossRef Zhao, Z., Yang, P., Guerrero, J. M., Xu, Z., & Green, T. C. (2016). Multiple-time-scales hierarchical frequency stability control strategy of medium-voltage isolated microgrid. IEEE Transactions on Power Electronics, 31(8), 5974–5991.CrossRef
18.
Zurück zum Zitat Baghaee, H. R., Mirsalim, M., & Gharehpetian, G. B. (2016). Power calculation using RBF neural networks to improve power sharing of hierarchical control scheme in multi-DER microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 04(4), 1217–1225.CrossRef Baghaee, H. R., Mirsalim, M., & Gharehpetian, G. B. (2016). Power calculation using RBF neural networks to improve power sharing of hierarchical control scheme in multi-DER microgrids. IEEE Journal of Emerging and Selected Topics in Power Electronics, 04(4), 1217–1225.CrossRef
19.
Zurück zum Zitat Li, Z., Zang, C., Zeng, P., Yu, H., & Li, S. (2018). Fully distributed hierarchical control of parallel grid-supporting inverters in islanded AC microgrids. IEEE Transactions on Industrial Informatics, 14(2), 679–690.CrossRef Li, Z., Zang, C., Zeng, P., Yu, H., & Li, S. (2018). Fully distributed hierarchical control of parallel grid-supporting inverters in islanded AC microgrids. IEEE Transactions on Industrial Informatics, 14(2), 679–690.CrossRef
20.
Zurück zum Zitat Raju, P. E. S. N., & Jain, T. (2018). Impact of load dynamics and load sharing among distributed generations on stability and dynamic performance of islanded AC microgrids. Electric Power Systems Research, 157, 200–210.CrossRef Raju, P. E. S. N., & Jain, T. (2018). Impact of load dynamics and load sharing among distributed generations on stability and dynamic performance of islanded AC microgrids. Electric Power Systems Research, 157, 200–210.CrossRef
21.
Zurück zum Zitat Zolotas, A. C., Chaudhuri, B., Jaimoukha, I. M., & Korba, P. (2007). A study on LQG/LTR control for damping inter-area oscillations in power systems. IEEE Transactions on Control Systems Technology, 15(1), 151–160.CrossRef Zolotas, A. C., Chaudhuri, B., Jaimoukha, I. M., & Korba, P. (2007). A study on LQG/LTR control for damping inter-area oscillations in power systems. IEEE Transactions on Control Systems Technology, 15(1), 151–160.CrossRef
22.
Zurück zum Zitat Surinkaew, T., & Ngamroo, I. (2016). Hierarchical co-ordinated wide area and local controls of DFIG wind turbine and PSS for robust power oscillation damping. IEEE Transactions on Sustainable Energy, 7(3), 943–955.CrossRef Surinkaew, T., & Ngamroo, I. (2016). Hierarchical co-ordinated wide area and local controls of DFIG wind turbine and PSS for robust power oscillation damping. IEEE Transactions on Sustainable Energy, 7(3), 943–955.CrossRef
23.
Zurück zum Zitat Stahlhut, J. W., Browne, T. J., Heydt, G. T., & Vittal, V. (2008). Latency viewed as a stochastic process and its impact on wide area power system control signals. IEEE Transactions on Power Systems, 23(1), 84–91CrossRef Stahlhut, J. W., Browne, T. J., Heydt, G. T., & Vittal, V. (2008). Latency viewed as a stochastic process and its impact on wide area power system control signals. IEEE Transactions on Power Systems, 23(1), 84–91CrossRef
24.
Zurück zum Zitat Almutairi, A. (2010). Enhancement of Power System Stability Using Wide Area Measurement System Based Damping Controller, Ph.D. dissertation, The University of Manchester, Manchester. Almutairi, A. (2010). Enhancement of Power System Stability Using Wide Area Measurement System Based Damping Controller, Ph.D. dissertation, The University of Manchester, Manchester.
25.
Zurück zum Zitat Cheng, L., Chen, G., Zhang, F., Li, G., & Gao, W. (2014). Adaptive time delay compensator (ATDC) design for wide-area power system stabilizer. IEEE Transactions on Smart Grid, 5(6), 2957–2966.CrossRef Cheng, L., Chen, G., Zhang, F., Li, G., & Gao, W. (2014). Adaptive time delay compensator (ATDC) design for wide-area power system stabilizer. IEEE Transactions on Smart Grid, 5(6), 2957–2966.CrossRef
26.
Zurück zum Zitat Milano, F. (2016). Small-signal stability analysis of large power systems with inclusion of multiple delays. IEEE Transactions on Power Systems, 31(4), 3257–3266.CrossRef Milano, F. (2016). Small-signal stability analysis of large power systems with inclusion of multiple delays. IEEE Transactions on Power Systems, 31(4), 3257–3266.CrossRef
27.
Zurück zum Zitat Beiraghi, M., & Ranjbar, A. M. (2016). Adaptive delay compensator for the robust wide-area damping controller design. IEEE Transactions on Power Systems, 31(6), 4966–4976.CrossRef Beiraghi, M., & Ranjbar, A. M. (2016). Adaptive delay compensator for the robust wide-area damping controller design. IEEE Transactions on Power Systems, 31(6), 4966–4976.CrossRef
28.
Zurück zum Zitat Ghosh, S., Folly, K. A., & Patel, A. (2018). Synchronized versus non-synchronized feedback for speed-based wide-area PSS: Effect of time-delay. IEEE Transactions on Smart Grid, 9(5), 3976–3985.CrossRef Ghosh, S., Folly, K. A., & Patel, A. (2018). Synchronized versus non-synchronized feedback for speed-based wide-area PSS: Effect of time-delay. IEEE Transactions on Smart Grid, 9(5), 3976–3985.CrossRef
29.
Zurück zum Zitat Aminifar, F., Fotuhi-Firuzabad, M., Safdarian, A., Davoudi, A., & Shahidehpour, M. (2015). Synchrophasor measurement technology in power systems: Panorama and state-of-the-art. IEEE Access, 2, 1607–1628.CrossRef Aminifar, F., Fotuhi-Firuzabad, M., Safdarian, A., Davoudi, A., & Shahidehpour, M. (2015). Synchrophasor measurement technology in power systems: Panorama and state-of-the-art. IEEE Access, 2, 1607–1628.CrossRef
30.
Zurück zum Zitat Li, J., Chen, Z., Cai, D., Zhen, W., & Huang, Q. (2016). Delay-dependent stability control for power system with multiple time-delays. IEEE Transactions on Power Systems, 31(3), 2316–2326.CrossRef Li, J., Chen, Z., Cai, D., Zhen, W., & Huang, Q. (2016). Delay-dependent stability control for power system with multiple time-delays. IEEE Transactions on Power Systems, 31(3), 2316–2326.CrossRef
31.
Zurück zum Zitat Li, M., & Chen, Y. (2018). A wide-area dynamic damping controller based on robust H∞ control for wide-area power systems with random delay and packet dropout. IEEE Transactions on Power Systems, 33(4), 4026–4037.CrossRef Li, M., & Chen, Y. (2018). A wide-area dynamic damping controller based on robust H control for wide-area power systems with random delay and packet dropout. IEEE Transactions on Power Systems, 33(4), 4026–4037.CrossRef
32.
Zurück zum Zitat National Academies of Sciences, Engineering, and Medicine and Others (2016). Analytic Research Foundations for the Next-Generation Electric Grid. Washington, DC: National Academies Press. National Academies of Sciences, Engineering, and Medicine and Others (2016). Analytic Research Foundations for the Next-Generation Electric Grid. Washington, DC: National Academies Press.
33.
Zurück zum Zitat Raju, P. E. S. N., & Jain, T. (2018). A two-level hierarchical controller to enhance stability and dynamic performance of islanded inverter-based microgrids with static and dynamic loads. IEEE Transactions on Industrial Informatics, 15(5), 2786–2797.CrossRef Raju, P. E. S. N., & Jain, T. (2018). A two-level hierarchical controller to enhance stability and dynamic performance of islanded inverter-based microgrids with static and dynamic loads. IEEE Transactions on Industrial Informatics, 15(5), 2786–2797.CrossRef
34.
Zurück zum Zitat Raju, P. E. S. N., & Jain, T. (2019). Development and validation of a generalized modeling approach for islanded inverter-based microgrids with static and dynamic loads. International Journal of Electrical Power & Energy Systems, 108, 177–190.CrossRef Raju, P. E. S. N., & Jain, T. (2019). Development and validation of a generalized modeling approach for islanded inverter-based microgrids with static and dynamic loads. International Journal of Electrical Power & Energy Systems, 108, 177–190.CrossRef
35.
Zurück zum Zitat Xue, D., Chen, Y. Q., & Atherton, D. P., et al. (2007). Linear Feedback Control: Analysis and Design with MATLAB. New York: SIAM.CrossRef Xue, D., Chen, Y. Q., & Atherton, D. P., et al. (2007). Linear Feedback Control: Analysis and Design with MATLAB. New York: SIAM.CrossRef
36.
Zurück zum Zitat Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 06(2), 182–197.CrossRef Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. (2002). A fast and elitist multiobjective genetic algorithm: NSGA-II. IEEE Transactions on Evolutionary Computation, 06(2), 182–197.CrossRef
Metadaten
Titel
WAM-Based Hierarchical Control of Islanded AC Microgrids
verfasst von
E. S. N. Raju P
Trapti Jain
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-59750-4_15