Skip to main content

2021 | OriginalPaper | Buchkapitel

16. Fault Ride Through and Fault Current Management for Microgrids

verfasst von : Wei Kou, Sung-Yeul Park

Erschienen in: Microgrids

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Over the recent years, the distributed energy resource (DER) generation and integration with utility grid became the most widely used worldwide. Thereon, the integration of distributed energy resources to the power grid and their dynamics during grid faults had become a critical issue in the new grid code requirements. In line with this, the fault ride through (FRT) capability control of grid-connected DER became the most important issue related to grid codes. There is growing interest in the industry in the application of microgrids (MGs) to take advantage of the proliferation of DER to address planning objectives such as improving resiliency and efficiency. In order to fulfill the FRT requirements imposed by grid codes, various approaches have been proposed in the last years. This chapter presents an overview of several existing FRT capability enhancement approaches during grid fault conditions and presents an FRT strategy specific for MG with an inverter-based interface (IB-MG) to maintain power exchange with distribution networks during network faults or disturbances. A uniqueness of this chapter is to outline a detailed fault current management strategy specific for MG FRT to coordinate with area utility grid, which is limiting the inverter fault current contributions and impacts on the distribution networks protection during faults or disturbances. A hardware-in-the-loop platform is proposed in this chapter for implementation and validation of MG FRT control algorithm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ackermann, T. (2005). Wind power in power systems. Hoboken, NJ: Wiley.CrossRef Ackermann, T. (2005). Wind power in power systems. Hoboken, NJ: Wiley.CrossRef
2.
Zurück zum Zitat Jauch, C., Sørensen, P., Norheim, I., & Rasmussen, C. (2007). Simulation of the impact of wind power on the transient fault behavior of the Nordic power system. Electric Power Systems Research, 77(2), 135–144.CrossRef Jauch, C., Sørensen, P., Norheim, I., & Rasmussen, C. (2007). Simulation of the impact of wind power on the transient fault behavior of the Nordic power system. Electric Power Systems Research, 77(2), 135–144.CrossRef
3.
Zurück zum Zitat Ellis, A., & Gonzalez, S. (2014). Implementation of Voltage and Frequency Ride-Through Requirements in Distributed Energy Resources Interconnection Standards Ellis, A., & Gonzalez, S. (2014). Implementation of Voltage and Frequency Ride-Through Requirements in Distributed Energy Resources Interconnection Standards
4.
Zurück zum Zitat Nair, N.-K. C., & Qureshi, W. A. (2014). Fault ride-through criteria development. In Renewable energy integration (pp. 41–67). New York: Springer.CrossRef Nair, N.-K. C., & Qureshi, W. A. (2014). Fault ride-through criteria development. In Renewable energy integration (pp. 41–67). New York: Springer.CrossRef
5.
Zurück zum Zitat Kou, W., Wei, D., Zhang, P., & Xiao, W. (2015). A direct phase-coordinates approach to fault ride through of unbalanced faults in large-scale photovoltaic power systems. Electric Power Components and Systems, 43(8–10), 902–913.CrossRef Kou, W., Wei, D., Zhang, P., & Xiao, W. (2015). A direct phase-coordinates approach to fault ride through of unbalanced faults in large-scale photovoltaic power systems. Electric Power Components and Systems, 43(8–10), 902–913.CrossRef
6.
Zurück zum Zitat Gkavanoudis, S. I., Oureilidis, K. O., & Demoulias, C. S. (2013). Fault Ride-Through Capability of a Microgrid with WTGs and Supercapacitor Storage During Balanced and Unbalanced Utility Voltage Sags (pp. 231–236). Gkavanoudis, S. I., Oureilidis, K. O., & Demoulias, C. S. (2013). Fault Ride-Through Capability of a Microgrid with WTGs and Supercapacitor Storage During Balanced and Unbalanced Utility Voltage Sags (pp. 231–236).
7.
Zurück zum Zitat Moursi, E., Shawky, M., Xiao, W., & Kirtley, J. L. (2013). Fault ride through capability for grid interfacing large scale PV power plants. Generation, Transmission & Distribution, IET, 7(9), 1027–1036.CrossRef Moursi, E., Shawky, M., Xiao, W., & Kirtley, J. L. (2013). Fault ride through capability for grid interfacing large scale PV power plants. Generation, Transmission & Distribution, IET, 7(9), 1027–1036.CrossRef
8.
Zurück zum Zitat Rodriguez, P., Timbus, A. V., Teodorescu, R., Liserre, M., & Blaabjerg, F. (2007). Flexible active power control of distributed power generation systems during grid faults. IEEE Transactions on Industrial Electronics, 54(5), 2583–2592.CrossRef Rodriguez, P., Timbus, A. V., Teodorescu, R., Liserre, M., & Blaabjerg, F. (2007). Flexible active power control of distributed power generation systems during grid faults. IEEE Transactions on Industrial Electronics, 54(5), 2583–2592.CrossRef
9.
Zurück zum Zitat Wang, F., Duarte, J. L., & Hendrix, M. A. M. (2011). Pliant active and reactive power control for grid-interactive converters under unbalanced voltage dips. IEEE Transactions on Power Electronics, 26(5), 1511–1521.CrossRef Wang, F., Duarte, J. L., & Hendrix, M. A. M. (2011). Pliant active and reactive power control for grid-interactive converters under unbalanced voltage dips. IEEE Transactions on Power Electronics, 26(5), 1511–1521.CrossRef
10.
Zurück zum Zitat Kou, W., Wei, D., Zhang, P., & Xiao, W. (2015). A direct phase-coordinates approach to fault ride through of unbalanced faults in large-scale photovoltaic power systems. Electric Power Components and Systems, 43(8–10), 902–913.CrossRef Kou, W., Wei, D., Zhang, P., & Xiao, W. (2015). A direct phase-coordinates approach to fault ride through of unbalanced faults in large-scale photovoltaic power systems. Electric Power Components and Systems, 43(8–10), 902–913.CrossRef
11.
Zurück zum Zitat Kou, W., & Park, S.-Y. (2017). Generalized direct phase-coordinates control of inverter-interfaced distributed energy resources on fault ride through strategies. In Power Symposium (NAPS), 2017 North American (pp. 1–6). New York: IEEE. Kou, W., & Park, S.-Y. (2017). Generalized direct phase-coordinates control of inverter-interfaced distributed energy resources on fault ride through strategies. In Power Symposium (NAPS), 2017 North American (pp. 1–6). New York: IEEE.
12.
Zurück zum Zitat Kou, W., & Wei, D. (2018). Fault ride through strategy of inverter-interfaced microgrids embedded in distributed network considering fault current management. Sustainable Energy, Grids and Networks 15, 43–52 Kou, W., & Wei, D. (2018). Fault ride through strategy of inverter-interfaced microgrids embedded in distributed network considering fault current management. Sustainable Energy, Grids and Networks 15, 43–52
13.
Zurück zum Zitat Kou, W., Rakiul Islam, S. M., & Park, S.-Y. (2018). Co-simulation testbed for unbalanced fault ride through hardware in the loop validation. In 2018 IEEE Electronic Power Grid (eGrid) (pp. 1–5). New York: IEEE. Kou, W., Rakiul Islam, S. M., & Park, S.-Y. (2018). Co-simulation testbed for unbalanced fault ride through hardware in the loop validation. In 2018 IEEE Electronic Power Grid (eGrid) (pp. 1–5). New York: IEEE.
14.
Zurück zum Zitat Zheng, F., Deng, C., Chen, L., Li, S., Liu, Y., & Liao, Y. (2015). Transient performance improvement of microgrid by a resistive superconducting fault current limiter. IEEE Transactions on Applied Superconductivity, 25(3), 1–5.CrossRef Zheng, F., Deng, C., Chen, L., Li, S., Liu, Y., & Liao, Y. (2015). Transient performance improvement of microgrid by a resistive superconducting fault current limiter. IEEE Transactions on Applied Superconductivity, 25(3), 1–5.CrossRef
15.
Zurück zum Zitat Ghanbari, T., & Farjah, E. (2013). Unidirectional fault current limiter: an efficient interface between the microgrid and main network. IEEE Transactions on Power Systems, 28(2), 1591–1598.CrossRef Ghanbari, T., & Farjah, E. (2013). Unidirectional fault current limiter: an efficient interface between the microgrid and main network. IEEE Transactions on Power Systems, 28(2), 1591–1598.CrossRef
16.
Zurück zum Zitat Rajaei, N., Ahmed, M. H., Salama, M., & Varma, R. (2014). Fault current management using inverter-based distributed generators in smart grids. IEEE Transactions on Smart Grid, 5(5), 2183–2193.CrossRef Rajaei, N., Ahmed, M. H., Salama, M., & Varma, R. (2014). Fault current management using inverter-based distributed generators in smart grids. IEEE Transactions on Smart Grid, 5(5), 2183–2193.CrossRef
17.
Zurück zum Zitat Yazdanpanahi, H., Li, Y. W., & Xu, W. (2012). A new control strategy to mitigate the impact of inverter-based DGs on protection system. IEEE Transactions on Smart Grid, 3(3), 1427–1436.CrossRef Yazdanpanahi, H., Li, Y. W., & Xu, W. (2012). A new control strategy to mitigate the impact of inverter-based DGs on protection system. IEEE Transactions on Smart Grid, 3(3), 1427–1436.CrossRef
18.
Zurück zum Zitat Tarafdar Hagh, M., & Khalili, T. (2019). A review of fault ride through of PV and wind renewable energies in grid codes. International Journal of Energy Research, 43(4), 1342–1356.CrossRef Tarafdar Hagh, M., & Khalili, T. (2019). A review of fault ride through of PV and wind renewable energies in grid codes. International Journal of Energy Research, 43(4), 1342–1356.CrossRef
19.
Zurück zum Zitat Colombo, E., Bologna, S., & Masera, D. (2013). Renewable energy for unleashing sustainable development (Vol. 10, pp. 978–983). Cham: Springer International Publishing.CrossRef Colombo, E., Bologna, S., & Masera, D. (2013). Renewable energy for unleashing sustainable development (Vol. 10, pp. 978–983). Cham: Springer International Publishing.CrossRef
20.
Zurück zum Zitat Guttromson, R., & Glover, S. (2014). The Advanced Micro-Grid Integration and Interoperability. Guttromson, R., & Glover, S. (2014). The Advanced Micro-Grid Integration and Interoperability.
21.
Zurück zum Zitat Hossain, J., & Pota, H. R. (2014). Robust control for grid voltage stability: High penetration of renewable energy. New York: Springer.CrossRef Hossain, J., & Pota, H. R. (2014). Robust control for grid voltage stability: High penetration of renewable energy. New York: Springer.CrossRef
22.
Zurück zum Zitat Basso, T. S. (2014). IEEE 1547 and 2030 standards for distributed energy resources interconnection and interoperability with the electricity grid (Vol. 15013). Golden, CO: National Renewable Energy Laboratory. Basso, T. S. (2014). IEEE 1547 and 2030 standards for distributed energy resources interconnection and interoperability with the electricity grid (Vol. 15013). Golden, CO: National Renewable Energy Laboratory.
23.
Zurück zum Zitat Crăciun, B.-I., Kerekes, T., Séra, D., & Teodorescu, R. (2012). Overview of Recent Grid Codes for PV Power Integration (pp. 959–965). Crăciun, B.-I., Kerekes, T., Séra, D., & Teodorescu, R. (2012). Overview of Recent Grid Codes for PV Power Integration (pp. 959–965).
24.
Zurück zum Zitat Jiang, L., Wang, C., Huang, Y., Pei, Z., Xin, S., Wang, W., et al. (2015). Growth in wind and sun: Integrating variable generation in China. IEEE Power and Energy Magazine, 13(6), 40–49.CrossRef Jiang, L., Wang, C., Huang, Y., Pei, Z., Xin, S., Wang, W., et al. (2015). Growth in wind and sun: Integrating variable generation in China. IEEE Power and Energy Magazine, 13(6), 40–49.CrossRef
25.
Zurück zum Zitat IEEE standard for interconnecting distributed resources with electric power systems - amendment 1. IEEE Std 1547a-2014 (Amendment to IEEE Std 1547–2003), May 2014 (pp. 1–16) IEEE standard for interconnecting distributed resources with electric power systems - amendment 1. IEEE Std 1547a-2014 (Amendment to IEEE Std 1547–2003), May 2014 (pp. 1–16)
26.
Zurück zum Zitat El-Naggar, A., & Erlich, I. (2017). Short-circuit current reduction techniques of the doubly-fed induction generator based wind turbines for fault ride through enhancement. IET Renewable Power Generation, 11, 1033–1040.CrossRef El-Naggar, A., & Erlich, I. (2017). Short-circuit current reduction techniques of the doubly-fed induction generator based wind turbines for fault ride through enhancement. IET Renewable Power Generation, 11, 1033–1040.CrossRef
27.
Zurück zum Zitat Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2017). A new current limiting strategy and fault model to improve fault ride-through capability of inverter interfaced DERs in autonomous microgrids. Sustainable Energy Technologies and Assessments, 24(C), 71–81.CrossRef Baghaee, H. R., Mirsalim, M., Gharehpetian, G. B., & Talebi, H. A. (2017). A new current limiting strategy and fault model to improve fault ride-through capability of inverter interfaced DERs in autonomous microgrids. Sustainable Energy Technologies and Assessments, 24(C), 71–81.CrossRef
28.
Zurück zum Zitat Dahale, S., Das, A., Pindoriya, N. M., & Rajendran, S. (2017). An overview of DC-DC converter topologies and controls in DC microgrid. In 2017 7th International Conference on Power Systems (ICPS), pp. 410–415. New York: IEEE.CrossRef Dahale, S., Das, A., Pindoriya, N. M., & Rajendran, S. (2017). An overview of DC-DC converter topologies and controls in DC microgrid. In 2017 7th International Conference on Power Systems (ICPS), pp. 410–415. New York: IEEE.CrossRef
29.
Zurück zum Zitat Backhaus, S. N., William Swift, G., Chatzivasileiadis, S., Tschudi, W., Glover, S., Starke, M., et al. (2015). DC Microgrids Scoping Study. Estimate of Technical and Economic Benefits. Technical report, Los Alamos National Lab (LANL), Los Alamos, NM. Backhaus, S. N., William Swift, G., Chatzivasileiadis, S., Tschudi, W., Glover, S., Starke, M., et al. (2015). DC Microgrids Scoping Study. Estimate of Technical and Economic Benefits. Technical report, Los Alamos National Lab (LANL), Los Alamos, NM.
30.
Zurück zum Zitat Fei, G., Ren, K., Jun, C., & Tao, Y. (2019). Primary and secondary control in dc microgrids: A review. Journal of Modern Power Systems and Clean Energy, 7(2), 227–242.CrossRef Fei, G., Ren, K., Jun, C., & Tao, Y. (2019). Primary and secondary control in dc microgrids: A review. Journal of Modern Power Systems and Clean Energy, 7(2), 227–242.CrossRef
31.
Zurück zum Zitat Teodorescu, R., Liserre, M., et al. (2011). Grid converters for photovoltaic and wind power systems (Vol. 29). Hoboken, NJ: Wiley.CrossRef Teodorescu, R., Liserre, M., et al. (2011). Grid converters for photovoltaic and wind power systems (Vol. 29). Hoboken, NJ: Wiley.CrossRef
32.
Zurück zum Zitat Junyent-Ferré, A., Gomis-Bellmunt, O., Green, T. C., & Soto-Sanchez, D. E. (2011). Current control reference calculation issues for the operation of renewable source grid interface VSCs under unbalanced voltage sags. IEEE Transactions on Power Electronics, 26(12), 3744–3753.CrossRef Junyent-Ferré, A., Gomis-Bellmunt, O., Green, T. C., & Soto-Sanchez, D. E. (2011). Current control reference calculation issues for the operation of renewable source grid interface VSCs under unbalanced voltage sags. IEEE Transactions on Power Electronics, 26(12), 3744–3753.CrossRef
33.
Zurück zum Zitat Shawky, M., Moursi, E., Xiao, W., & Kirtley, J. L. Jr. Fault ride through capability for grid interfacing large scale PV power plants. IET Generation, Transmission & Distribution, 7(9), 1027–1036. Shawky, M., Moursi, E., Xiao, W., & Kirtley, J. L. Jr. Fault ride through capability for grid interfacing large scale PV power plants. IET Generation, Transmission & Distribution, 7(9), 1027–1036.
34.
Zurück zum Zitat Eloy-Garcia Carrasco, J., Tena, J. M., Ugena, D., Alonso-Martinez, J., Santos-Martin, D., & Arnaltes, S. (2013). Testing low voltage ride through capabilities of solar inverters. Electric Power Systems Research, 96, 111–118.CrossRef Eloy-Garcia Carrasco, J., Tena, J. M., Ugena, D., Alonso-Martinez, J., Santos-Martin, D., & Arnaltes, S. (2013). Testing low voltage ride through capabilities of solar inverters. Electric Power Systems Research, 96, 111–118.CrossRef
35.
Zurück zum Zitat Akagi, H., Watanabe, E. H., & Aredes, M. (2017). Instantaneous power theory and applications to power conditioning. Hoboken, NJ: Wiley.CrossRef Akagi, H., Watanabe, E. H., & Aredes, M. (2017). Instantaneous power theory and applications to power conditioning. Hoboken, NJ: Wiley.CrossRef
36.
Zurück zum Zitat Song, H.-S., & Nam, K. (1999). Dual current control scheme for PWM converter under unbalanced input voltage conditions. IEEE Transactions on Industrial Electronics, 46(5), 953–959.CrossRef Song, H.-S., & Nam, K. (1999). Dual current control scheme for PWM converter under unbalanced input voltage conditions. IEEE Transactions on Industrial Electronics, 46(5), 953–959.CrossRef
37.
Zurück zum Zitat Camacho, A., Castilla, M., Miret, J., Vasquez, J. C., & Alarcón-Gallo, E. (2012). Flexible voltage support control for three-phase distributed generation inverters under grid fault. IEEE Transactions on Industrial Electronics, 60(4), 1429–1441.CrossRef Camacho, A., Castilla, M., Miret, J., Vasquez, J. C., & Alarcón-Gallo, E. (2012). Flexible voltage support control for three-phase distributed generation inverters under grid fault. IEEE Transactions on Industrial Electronics, 60(4), 1429–1441.CrossRef
38.
Zurück zum Zitat Baran, M. E., & Mahajan, N. R. (2007). Overcurrent protection on voltage-source-converter-based multiterminal dc distribution systems. IEEE Transactions on Power Delivery, 22(1), 406–412.CrossRef Baran, M. E., & Mahajan, N. R. (2007). Overcurrent protection on voltage-source-converter-based multiterminal dc distribution systems. IEEE Transactions on Power Delivery, 22(1), 406–412.CrossRef
39.
Zurück zum Zitat Salcedo, R., Bokhari, A., Diaz-Aguiló, M., Lin, N., Hong, T., de León, F., Czarkowski, D., Flank, S., McDonnell, A., & Uosef, R. E. (2016). Benefits of a nonsynchronous microgrid on dense-load LV secondary networks. IEEE Transactions on Power Delivery, 31(3), 1076–1084.CrossRef Salcedo, R., Bokhari, A., Diaz-Aguiló, M., Lin, N., Hong, T., de León, F., Czarkowski, D., Flank, S., McDonnell, A., & Uosef, R. E. (2016). Benefits of a nonsynchronous microgrid on dense-load LV secondary networks. IEEE Transactions on Power Delivery, 31(3), 1076–1084.CrossRef
40.
Zurück zum Zitat Wang, Q., Zhou, N., & Ye, L. (2015). Fault analysis for distribution networks with current-controlled three-phase inverter-interfaced distributed generators. IEEE Transactions on Power Delivery, 30(3), 1532–1542.CrossRef Wang, Q., Zhou, N., & Ye, L. (2015). Fault analysis for distribution networks with current-controlled three-phase inverter-interfaced distributed generators. IEEE Transactions on Power Delivery, 30(3), 1532–1542.CrossRef
41.
Zurück zum Zitat OPAL-RT Technologies (2015). Op4510 RT-LAB-RCP/HIL Systems User Guide. OPAL-RT Technologies (2015). Op4510 RT-LAB-RCP/HIL Systems User Guide.
42.
Zurück zum Zitat OPAL-RT Technologies (2015). Op5340-1/op5340-2 User Guide: Analog to Digital Converter Module. OPAL-RT Technologies (2015). Op5340-1/op5340-2 User Guide: Analog to Digital Converter Module.
Metadaten
Titel
Fault Ride Through and Fault Current Management for Microgrids
verfasst von
Wei Kou
Sung-Yeul Park
Copyright-Jahr
2021
DOI
https://doi.org/10.1007/978-3-030-59750-4_16