Skip to main content

2023 | OriginalPaper | Buchkapitel

21. Water Quality Modelling and Parameter Assessment Using Machine Learning Algorithms: A Case Study of Ganga and Yamuna Rivers in Prayagraj, Uttar Pradesh, India

verfasst von : A. K. Shukla, R. Singh, Raj Mohan Singh, R. P. Singh

Erschienen in: Environmental Processes and Management

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Due to the rapid growth in population, industrialization and agricultural outputs, the stress on groundwater and surface water has increased exponentially. The water quality depends on the interaction of both the groundwater and surface water; therefore, management and monitoring of the surface water are the need of the hour. River water management is a major environmental challenge worldwide. Because of the nonlinear behaviour of various water quality parameters, estimating the water quality of a surface water at any point of its flow is a time-consuming task. River quality monitoring is a difficult, cumbersome, and costly process that can lead to many analytical errors. Therefore, the main objective of this work is to create a reliable model for assessing and forecasting changes in water quality in Prayagraj (earlier know as Allahabad), Uttar Pradesh, India at three separate places, including the Ganga River, Yamuna River, and confluence of both rivers (also known as Sangam) using artifical neural network (ANN) and genetic algorithm (GA) models. The developed model was used to statistically compare the results by analysing samples collected from the selected stations fortnightly. Based on the correlation matrix of the water quality for three stations, general prediction models for the selected parameters, namely DO, hardness, turbidity, and BOD, were developed. The prediction model was developed for DO, hardness, and turbidity for station 1 (Ganga River). The results showed that the correlation coefficient (R) for the ANN prediction model is 0.97, the average absolute relative error (AARE) is 0.002, and the model efficiency (ME) is 0.95 for the hardness prediction model. Similarly, the BOD-ANN prediction model performed well at station 2 (Yamuna River) and station 3 (Sangam), with R = 0.99, AARE = 0.006, root mean square error (RMSE) = 0.06, and ME = 0.99 at station 2. Overall, ANN outperforms all other modelling techniques for all four prediction models.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Broadhurst A, Cipolla R (1999) The applications of uncalibrated occlusion junctions. In: BMVC, pp 1–10 Broadhurst A, Cipolla R (1999) The applications of uncalibrated occlusion junctions. In: BMVC, pp 1–10
Zurück zum Zitat Chakraborty K, Mehrotra K, Mohan CK, Ranka S (1992) Forecasting the behavior of multivariate time series using neural networks. Neural Netw 5(6):961–970CrossRef Chakraborty K, Mehrotra K, Mohan CK, Ranka S (1992) Forecasting the behavior of multivariate time series using neural networks. Neural Netw 5(6):961–970CrossRef
Zurück zum Zitat El-Shafie A, Noureldin AE, Taha MR, Basri H (2008) Neural network model for Nile River inflow forecasting based on correlation analysis of historical inflow data El-Shafie A, Noureldin AE, Taha MR, Basri H (2008) Neural network model for Nile River inflow forecasting based on correlation analysis of historical inflow data
Zurück zum Zitat Grubert JP (2003) Acid deposition in the eastern United States and neural network predictions for the future. J Environ Eng Sci 2(2):99–109CrossRef Grubert JP (2003) Acid deposition in the eastern United States and neural network predictions for the future. J Environ Eng Sci 2(2):99–109CrossRef
Zurück zum Zitat Lachtermacher G, Fuller JD (1994) Backpropagation in hydrological time series forecasting. In: Stochastic and statistical methods in hydrology and environmental engineering. Springer, Dordrecht, pp 229–242 Lachtermacher G, Fuller JD (1994) Backpropagation in hydrological time series forecasting. In: Stochastic and statistical methods in hydrology and environmental engineering. Springer, Dordrecht, pp 229–242
Zurück zum Zitat Li S, Wunsch DC, O’Hair E, Giesselmann MG (2001) Comparative analysis of regression and artificial neural network models for wind turbine power curve estimation. J Sol Energ Eng 123(4):327–332CrossRef Li S, Wunsch DC, O’Hair E, Giesselmann MG (2001) Comparative analysis of regression and artificial neural network models for wind turbine power curve estimation. J Sol Energ Eng 123(4):327–332CrossRef
Zurück zum Zitat Liong SY, Sivapragasam C (2002) Flood stage forecasting with support vector machines 1. J Am Water Resour Assoc 38(1):173–186CrossRef Liong SY, Sivapragasam C (2002) Flood stage forecasting with support vector machines 1. J Am Water Resour Assoc 38(1):173–186CrossRef
Zurück zum Zitat Lubna H, Masoom MR (2015) Hydro-dissection—a simple solution in difficult laparoscopic cholecystectomy. Mymensingh Med J MMJ 24(3):592–595 Lubna H, Masoom MR (2015) Hydro-dissection—a simple solution in difficult laparoscopic cholecystectomy. Mymensingh Med J MMJ 24(3):592–595
Zurück zum Zitat Makarynskyy O (2004) Improving wave predictions with artificial neural networks. Ocean Eng 31(5–6):709–724CrossRef Makarynskyy O (2004) Improving wave predictions with artificial neural networks. Ocean Eng 31(5–6):709–724CrossRef
Zurück zum Zitat Muttil N, Chau KW (2006) Neural network and genetic programming for modelling coastal algal blooms. Int J Environ Pollut 28(3/4):223CrossRef Muttil N, Chau KW (2006) Neural network and genetic programming for modelling coastal algal blooms. Int J Environ Pollut 28(3/4):223CrossRef
Zurück zum Zitat Schizas CN, Pattichis CS, Michaelides SC (1994) Forecasting, minimum temperature vvith short time-length data using. Neural Netw World 2(94):219–230 Schizas CN, Pattichis CS, Michaelides SC (1994) Forecasting, minimum temperature vvith short time-length data using. Neural Netw World 2(94):219–230
Zurück zum Zitat Vahidnia MH, Alesheikh AA, Alimohammadi A, Hosseinali F (2010) A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping. Comput Geosci 36(9):1101–1114CrossRef Vahidnia MH, Alesheikh AA, Alimohammadi A, Hosseinali F (2010) A GIS-based neuro-fuzzy procedure for integrating knowledge and data in landslide susceptibility mapping. Comput Geosci 36(9):1101–1114CrossRef
Zurück zum Zitat Wen CG, Lee CS (1998) A neural network approach to multiobjective optimization for water quality management in a river basin. Water Resour Res 34(3):427–436CrossRef Wen CG, Lee CS (1998) A neural network approach to multiobjective optimization for water quality management in a river basin. Water Resour Res 34(3):427–436CrossRef
Metadaten
Titel
Water Quality Modelling and Parameter Assessment Using Machine Learning Algorithms: A Case Study of Ganga and Yamuna Rivers in Prayagraj, Uttar Pradesh, India
verfasst von
A. K. Shukla
R. Singh
Raj Mohan Singh
R. P. Singh
Copyright-Jahr
2023
DOI
https://doi.org/10.1007/978-3-031-20208-7_20