Skip to main content
Erschienen in: Fluid Dynamics 7/2023

01.12.2023

Wave Motion in a Viscous Homogeneous Fluid with a Surface Electric Charge

verfasst von: A. A. Ochirov, Yu. D. Chashechkin

Erschienen in: Fluid Dynamics | Ausgabe 7/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The influence of a surface electric charge on the character and properties of wave motion along the free surface of a viscous homogeneous fluid is investigated by analytical asymptotic methods. Expressions describing the dispersion relations of the wave-motion components are obtained. The phase and group velocities of the structures forming wave motion are determined.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rayligh (Strutt, J.W.), On waves, Phil. Mag., 1876, vol. 1, pp. 257–259. Rayligh (Strutt, J.W.), On waves, Phil. Mag., 1876, vol. 1, pp. 257–259.
2.
Zurück zum Zitat Stokes, G.G., On the theory of oscillatory waves, Trans. Cam. Philos. Soc., 1847, vol. 8, pp. 441–455. Stokes, G.G., On the theory of oscillatory waves, Trans. Cam. Philos. Soc., 1847, vol. 8, pp. 441–455.
3.
Zurück zum Zitat Sretenskii, L.N., On waves on the surface of a viscous fluid, Tr. TsAGI, 1941, no. 541, pp. 1–34. Sretenskii, L.N., On waves on the surface of a viscous fluid, Tr. TsAGI, 1941, no. 541, pp. 1–34.
4.
Zurück zum Zitat Lamb, H., Hydrodynamics, Cambridge: Univ. Press, 1924. Lamb, H., Hydrodynamics, Cambridge: Univ. Press, 1924.
5.
6.
Zurück zum Zitat Lighthill, J., Waves in Fluids, Cambridge: Univ. Press, 1978. Lighthill, J., Waves in Fluids, Cambridge: Univ. Press, 1978.
7.
Zurück zum Zitat Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Oxford: Clarendon, 1961. Chandrasekhar, S., Hydrodynamic and Hydromagnetic Stability, Oxford: Clarendon, 1961.
8.
Zurück zum Zitat Landau, L.D. and Lifshitz, E.M., Course of Theoretical Physics, vol. 6: Fluid Mechanics, Oxford: Pergamon, 1987. Landau, L.D. and Lifshitz, E.M., Course of Theoretical Physics, vol. 6: Fluid Mechanics, Oxford: Pergamon, 1987.
9.
Zurück zum Zitat Kochin, N.E., Kibel, I.A., and Roze, N.V., Theoretical Hydromechanics, Intersci. Publ., 1964, vol. 1. Kochin, N.E., Kibel, I.A., and Roze, N.V., Theoretical Hydromechanics, Intersci. Publ., 1964, vol. 1.
10.
Zurück zum Zitat Levich, V.G., Physicochemical Hydrodynamics, Englewood Cliffs, N.Y.: Prentice-Hall, 1962. Levich, V.G., Physicochemical Hydrodynamics, Englewood Cliffs, N.Y.: Prentice-Hall, 1962.
12.
Zurück zum Zitat Grzonka, L. and Cieślikiewicz, W., Mass transport induced by nonlinear surface gravity waves, Proc. Copernicus Meetings, Boston, 2023, no. EGU23-16788. Grzonka, L. and Cieślikiewicz, W., Mass transport induced by nonlinear surface gravity waves, Proc. Copernicus Meetings, Boston, 2023, no. EGU23-16788.
13.
Zurück zum Zitat Druzhinin, O.A. and Tsai, W.T., Numerical simulation of micro-bubbles dispersion by surface waves, Algorithms, 2022, vol. 15, no. 4, p. 110.CrossRef Druzhinin, O.A. and Tsai, W.T., Numerical simulation of micro-bubbles dispersion by surface waves, Algorithms, 2022, vol. 15, no. 4, p. 110.CrossRef
14.
Zurück zum Zitat Kalinichenko, V.A., Regularization of barotropic gravity waves in a two-layer fluid, Fluid Dyn., 2019, vol. 54, no. 6, pp. 761–773.ADSCrossRef Kalinichenko, V.A., Regularization of barotropic gravity waves in a two-layer fluid, Fluid Dyn., 2019, vol. 54, no. 6, pp. 761–773.ADSCrossRef
15.
Zurück zum Zitat Kalinichenko, V.A., Standing gravity waves on the surface of a viscous liquid, Fluid Dyn., 2022, vol. 57, no. 7, pp. 891–899.ADSMathSciNetCrossRef Kalinichenko, V.A., Standing gravity waves on the surface of a viscous liquid, Fluid Dyn., 2022, vol. 57, no. 7, pp. 891–899.ADSMathSciNetCrossRef
16.
Zurück zum Zitat Abrashkin, A.A. and Bodunova, Yu.P., Spatial standing waves on the surface of viscous fluid, Tr. Nizhegorod. Gos. Tekh. Univ. im. R. E. Alekseeva, Mekh. Zhidk. Gaza, 2011, no. 2 (87), pp. 49–54. Abrashkin, A.A. and Bodunova, Yu.P., Spatial standing waves on the surface of viscous fluid, Tr. Nizhegorod. Gos. Tekh. Univ. im. R. E. Alekseeva, Mekh. Zhidk. Gaza, 2011, no. 2 (87), pp. 49–54.
17.
Zurück zum Zitat Rudenko, A.I., Two types of waves in a two-layer stratified liquid, Mater. mezhdunar. nach. kof. Aktual’nye proeblemy prikladnoi matematiki i mekhaniki (Proc. Int. Conf. Applied Mathematics, Computational Science and Mechanics: Current Problems), Voronezh, Dec. 12–14, 2022, pp. 1450–1456. Rudenko, A.I., Two types of waves in a two-layer stratified liquid, Mater. mezhdunar. nach. kof. Aktual’nye proeblemy prikladnoi matematiki i mekhaniki (Proc. Int. Conf. Applied Mathematics, Computational Science and Mechanics: Current Problems), Voronezh, Dec. 12–14, 2022, pp. 1450–1456.
18.
Zurück zum Zitat Chashechkin, Yu., Ochirov, A., and Lapshina, K.Yu., Surface waves along the interface of stably stratified liquids, Fiz.-Khim. Kinet. Gaz. Din., 2022, vol. 23, no. 6. Chashechkin, Yu., Ochirov, A., and Lapshina, K.Yu., Surface waves along the interface of stably stratified liquids, Fiz.-Khim. Kinet. Gaz. Din., 2022, vol. 23, no. 6.
19.
Zurück zum Zitat Chashechkin, Yu.D. and Ochirov, A.A., Periodic waves and ligaments on the surface of a viscous exponentially stratified fluid in a uniform gravity field, Axioms, 2022, vol. 11, no. 8, p. 402.CrossRef Chashechkin, Yu.D. and Ochirov, A.A., Periodic waves and ligaments on the surface of a viscous exponentially stratified fluid in a uniform gravity field, Axioms, 2022, vol. 11, no. 8, p. 402.CrossRef
20.
Zurück zum Zitat Roach, L.A., et al., Advances in modeling interactions between sea ice and ocean surface waves, J. Adv. Model. Earth Syst., 2019, vol. 11, no. 12, pp. 4167–4181.ADSCrossRef Roach, L.A., et al., Advances in modeling interactions between sea ice and ocean surface waves, J. Adv. Model. Earth Syst., 2019, vol. 11, no. 12, pp. 4167–4181.ADSCrossRef
21.
Zurück zum Zitat Buckley, M.P. and Veron, F., The turbulent airflow over wind generated surface waves, Eur. J. Mech. B: Fluids, 2019, vol. 73, pp. 132–143.ADSCrossRef Buckley, M.P. and Veron, F., The turbulent airflow over wind generated surface waves, Eur. J. Mech. B: Fluids, 2019, vol. 73, pp. 132–143.ADSCrossRef
22.
Zurück zum Zitat Ersoy, N.E. and Eslamian, M., Capillary surface wave formation and mixing of miscible liquids during droplet impact onto a liquid film, Phys. Fluids, 2019, vol. 31, no. 1, p. 012107. Ersoy, N.E. and Eslamian, M., Capillary surface wave formation and mixing of miscible liquids during droplet impact onto a liquid film, Phys. Fluids, 2019, vol. 31, no. 1, p. 012107.
23.
Zurück zum Zitat Il’inykh, A.Y. and Chashechkin, Yu.D., Fine structure of the spreading pattern of a freely falling droplet in a fluid at rest, Fluid Dyn., 2021, vol. 56, no. 4, pp. 445–450.MathSciNetCrossRef Il’inykh, A.Y. and Chashechkin, Yu.D., Fine structure of the spreading pattern of a freely falling droplet in a fluid at rest, Fluid Dyn., 2021, vol. 56, no. 4, pp. 445–450.MathSciNetCrossRef
24.
Zurück zum Zitat Chashechkin, Yu.D., Packages of capillary and acoustic waves of a drop impact Vestn. Mosk. Gos. Univ. im. N.E. Baumana, Ser. Estestv Nauki, 2021, no. 1 (94), pp. 73–91. Chashechkin, Yu.D., Packages of capillary and acoustic waves of a drop impact Vestn. Mosk. Gos. Univ. im. N.E. Baumana, Ser. Estestv Nauki, 2021, no. 1 (94), pp. 73–91.
25.
Zurück zum Zitat Chashechkin, Yu.D., Evolution of the fine structure of the matter distribution of a free-falling droplet in mixing liquids, Izv., Atmos. Oceanic Phys., 2019, vol. 55, no. 3, pp. 285–294.ADSCrossRef Chashechkin, Yu.D., Evolution of the fine structure of the matter distribution of a free-falling droplet in mixing liquids, Izv., Atmos. Oceanic Phys., 2019, vol. 55, no. 3, pp. 285–294.ADSCrossRef
26.
Zurück zum Zitat Tonks, L., A theory of liquid surface rupture by a uniform electric field, Phys. Rev., 1935, vol. 48, no. 6, p. 562.ADSCrossRef Tonks, L., A theory of liquid surface rupture by a uniform electric field, Phys. Rev., 1935, vol. 48, no. 6, p. 562.ADSCrossRef
27.
Zurück zum Zitat Frenkel, Ya.I., The Tonks theory on liquid surface disruption by constant electric field in vacuum, Zh. Eksp. Teor. Fiz., 1936, vol. 6, no. 4, pp. 348–350. Frenkel, Ya.I., The Tonks theory on liquid surface disruption by constant electric field in vacuum, Zh. Eksp. Teor. Fiz., 1936, vol. 6, no. 4, pp. 348–350.
28.
Zurück zum Zitat Taylor, G.I., Disintegration of water drops in an electric field, Proc. R. Soc. London A, 1964, vol. 280, pp. 383–397.ADSCrossRef Taylor, G.I., Disintegration of water drops in an electric field, Proc. R. Soc. London A, 1964, vol. 280, pp. 383–397.ADSCrossRef
29.
Zurück zum Zitat Grigor’ev, A.I., Kolbneva, N.Y., and Shiryaeva, S.O., Nonlinear monopole and dipole acoustic radiation of a weakly charged droplet oscillating in a uniform electrostatic field, Fluid Dyn., 2022, vol. 57, no. 8, pp. 982–997.ADSMathSciNetCrossRef Grigor’ev, A.I., Kolbneva, N.Y., and Shiryaeva, S.O., Nonlinear monopole and dipole acoustic radiation of a weakly charged droplet oscillating in a uniform electrostatic field, Fluid Dyn., 2022, vol. 57, no. 8, pp. 982–997.ADSMathSciNetCrossRef
30.
Zurück zum Zitat Zhuravleva, E.N., et al., A new class of exact solutions in the planar nonstationary problem of motion of a fluid with a free boundary, Theor. Math. Phys., 2020, vol. 202, no. 3, pp. 344–351.MathSciNetCrossRef Zhuravleva, E.N., et al., A new class of exact solutions in the planar nonstationary problem of motion of a fluid with a free boundary, Theor. Math. Phys., 2020, vol. 202, no. 3, pp. 344–351.MathSciNetCrossRef
31.
Zurück zum Zitat Belonozhko, D.F. and Grigor’ev, A.I., Nonlinear periodic waves on the charged surface of a deep low-viscosity conducting liquid, Tech. Phys., 2004, vol. 49, no. 3, pp. 287–295.CrossRef Belonozhko, D.F. and Grigor’ev, A.I., Nonlinear periodic waves on the charged surface of a deep low-viscosity conducting liquid, Tech. Phys., 2004, vol. 49, no. 3, pp. 287–295.CrossRef
32.
Zurück zum Zitat Chashechkin, Yu.D., Foundations of engineering mathematics applied for fluid flows, Axioms, 2021, vol. 10, no. 4, p. 286.CrossRef Chashechkin, Yu.D., Foundations of engineering mathematics applied for fluid flows, Axioms, 2021, vol. 10, no. 4, p. 286.CrossRef
33.
Zurück zum Zitat Nayfeh, A.H., Introduction to Perturbation Technique, N. Y.: Wiley, 1993. Nayfeh, A.H., Introduction to Perturbation Technique, N. Y.: Wiley, 1993.
Metadaten
Titel
Wave Motion in a Viscous Homogeneous Fluid with a Surface Electric Charge
verfasst von
A. A. Ochirov
Yu. D. Chashechkin
Publikationsdatum
01.12.2023
Verlag
Pleiades Publishing
Erschienen in
Fluid Dynamics / Ausgabe 7/2023
Print ISSN: 0015-4628
Elektronische ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462823602012

Weitere Artikel der Ausgabe 7/2023

Fluid Dynamics 7/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.