Skip to main content
Erschienen in: Wireless Personal Communications 3/2020

21.11.2019

Weighted Majority Cooperative Game Based Dynamic Small Cell Clustering and Resource Allocation for 5G Green Mobile Network

verfasst von: Subha Ghosh, Debashis De

Erschienen in: Wireless Personal Communications | Ausgabe 3/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Green communication is important for next generation wireless network to connect massive number of mobile devices into the network. The deployment of femtocell without proper densification, the interference was increases and resources were not properly utilized. We address the small cell dynamically clustering under microcell base station and resource allocation among the small cells using weighted majority cooperative game theory in fifth generation (5G) mobile heterogeneous network (HetNet). We proposed three utility functions. The first utility function is used for minimizing the interference into the cluster. The addition or deletion of small cell in a cluster depends on the proposed utility function based on signal-to-interference-plus-noise-ratio (SINR). The weight means the number of small cell present into the cluster. In each cluster, a high majority small cell is selected using second utility function based on the minimum path loss values between the microcell and small cell base station. The high majority small cell act as a spectrum manager into the cluster. Other small cells submit a price value based on the user type and requirement data rate for a subcarrier to the high majority small cell spectrum manager. The high majority small cell allocates resources to the small cells using proposed algorithm based on price value and the third utility function. In the proposed work, we have calculated the power consumption, SINR, spectral efficiency of the network. The power consumption of the proposed network decreases approximately 30%, SINR and spectral efficiency are increased approximately 40% and 45% than existing approaches respectively.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mowla, M. M., Ahmad, I., Habibi, D., & Phung, Q. V. (2017). A green communication model for 5G systems. IEEE Transactions on Green Communications and Networking,1(3), 264–280.CrossRef Mowla, M. M., Ahmad, I., Habibi, D., & Phung, Q. V. (2017). A green communication model for 5G systems. IEEE Transactions on Green Communications and Networking,1(3), 264–280.CrossRef
2.
Zurück zum Zitat Gavrilovska, L., Rakovic, V., & Atanasovski, V. (2016). Visions towards 5G: Technical requirements and potential enablers. Wireless Personal Communications,87(3), 731–757.CrossRef Gavrilovska, L., Rakovic, V., & Atanasovski, V. (2016). Visions towards 5G: Technical requirements and potential enablers. Wireless Personal Communications,87(3), 731–757.CrossRef
3.
Zurück zum Zitat Ma, X., Sheng, M., & Zhang, Y. (2012). Green communications with network cooperation: A concurrent transmission approach. IEEE Communications Letters,16(12), 1952–1955.CrossRef Ma, X., Sheng, M., & Zhang, Y. (2012). Green communications with network cooperation: A concurrent transmission approach. IEEE Communications Letters,16(12), 1952–1955.CrossRef
4.
Zurück zum Zitat Rao, S. K., & Prasad, R. (2018). Impact of 5G technologies on smart city implementation. Wireless Personal Communications,100(1), 161–176.CrossRef Rao, S. K., & Prasad, R. (2018). Impact of 5G technologies on smart city implementation. Wireless Personal Communications,100(1), 161–176.CrossRef
5.
Zurück zum Zitat Rao, S. K., & Prasad, R. (2018). Impact of 5G technologies on industry 4.0. Wireless Personal Communications,100(1), 145–159.CrossRef Rao, S. K., & Prasad, R. (2018). Impact of 5G technologies on industry 4.0. Wireless Personal Communications,100(1), 145–159.CrossRef
6.
Zurück zum Zitat Abrol, A., & Jha, R. K. (2016). Power optimization in 5G networks: A step towards GrEEn communication. IEEE Access,4, 1355–1374.CrossRef Abrol, A., & Jha, R. K. (2016). Power optimization in 5G networks: A step towards GrEEn communication. IEEE Access,4, 1355–1374.CrossRef
7.
Zurück zum Zitat Gandotra, P., Jha, R. K., & Jain, S. (2017). Green communication in next generation cellular networks: A survey. IEEE Access,5, 11727–11758.CrossRef Gandotra, P., Jha, R. K., & Jain, S. (2017). Green communication in next generation cellular networks: A survey. IEEE Access,5, 11727–11758.CrossRef
8.
Zurück zum Zitat Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials,18(3), 1617–1655.CrossRef Agiwal, M., Roy, A., & Saxena, N. (2016). Next generation 5G wireless networks: A comprehensive survey. IEEE Communications Surveys & Tutorials,18(3), 1617–1655.CrossRef
9.
Zurück zum Zitat Farooq, M. U., Waseem, M., Qadri, M. T., & Waqar, M. (2017). Understanding 5G wireless cellular network: Challenges, emerging research directions and enabling technologies. Wireless Personal Communications,95(2), 261–285.CrossRef Farooq, M. U., Waseem, M., Qadri, M. T., & Waqar, M. (2017). Understanding 5G wireless cellular network: Challenges, emerging research directions and enabling technologies. Wireless Personal Communications,95(2), 261–285.CrossRef
10.
Zurück zum Zitat Shuminoski, T., & Janevski, T. (2014). Radio network aggregation for 5G mobile terminals in heterogeneous wireless and mobile networks. Wireless Personal Communications,78(2), 1211–1229.CrossRef Shuminoski, T., & Janevski, T. (2014). Radio network aggregation for 5G mobile terminals in heterogeneous wireless and mobile networks. Wireless Personal Communications,78(2), 1211–1229.CrossRef
11.
Zurück zum Zitat Ramkumar, M. V., Prasad, N. R., & Prasad, R. (2012). Middleware architecture for next generation heterogeneous networks. Wireless Personal Communications,66(3), 577–593.CrossRef Ramkumar, M. V., Prasad, N. R., & Prasad, R. (2012). Middleware architecture for next generation heterogeneous networks. Wireless Personal Communications,66(3), 577–593.CrossRef
12.
Zurück zum Zitat Noll, J., & Chowdhury, M. M. (2011). 5G: Service continuity in heterogeneous environments. Wireless Personal Communications,57(3), 413–429.CrossRef Noll, J., & Chowdhury, M. M. (2011). 5G: Service continuity in heterogeneous environments. Wireless Personal Communications,57(3), 413–429.CrossRef
13.
Zurück zum Zitat Mukherjee, A., Bhattacherjee, S., Pal, S., & De, D. (2013). Femtocell based green power consumption methods for mobile network. Computer Networks,57(1), 162–178.CrossRef Mukherjee, A., Bhattacherjee, S., Pal, S., & De, D. (2013). Femtocell based green power consumption methods for mobile network. Computer Networks,57(1), 162–178.CrossRef
14.
Zurück zum Zitat Ghanbarisabagh, M., Vetharatnam, G., Giacoumidis, E., & Malayer, S. M. (2019). Capacity improvement in 5G networks using femtocell. Wireless Personal Communications,105(3), 1027–1038.CrossRef Ghanbarisabagh, M., Vetharatnam, G., Giacoumidis, E., & Malayer, S. M. (2019). Capacity improvement in 5G networks using femtocell. Wireless Personal Communications,105(3), 1027–1038.CrossRef
15.
Zurück zum Zitat Fan, Z., & Sun, Y. (2010, May). Access and handover management for femtocell systems. In 2010 IEEE 71st vehicular technology conference (VTC 2010-Spring) (pp. 1–5). IEEE. Fan, Z., & Sun, Y. (2010, May). Access and handover management for femtocell systems. In 2010 IEEE 71st vehicular technology conference (VTC 2010-Spring) (pp. 1–5). IEEE.
16.
Zurück zum Zitat Mao, T., Feng, G., Liang, L., Qin, S., & Wu, B. (2016). Distributed energy-efficient power control for macro-femto networks. IEEE Transactions on Vehicular Technology,65(2), 718–731.CrossRef Mao, T., Feng, G., Liang, L., Qin, S., & Wu, B. (2016). Distributed energy-efficient power control for macro-femto networks. IEEE Transactions on Vehicular Technology,65(2), 718–731.CrossRef
17.
Zurück zum Zitat Niu, B., & Wong, V. W. (2016). Network configuration for two-tier macro-femto systems with hybrid access. IEEE Transactions on Vehicular Technology,65(4), 2528–2543.CrossRef Niu, B., & Wong, V. W. (2016). Network configuration for two-tier macro-femto systems with hybrid access. IEEE Transactions on Vehicular Technology,65(4), 2528–2543.CrossRef
18.
Zurück zum Zitat Zhang, X., Yang, K., Wang, P., & Hong, X. (2015). Energy efficient bandwidth allocation in heterogeneous wireless networks. Mobile Networks and Applications,20(2), 137–146.CrossRef Zhang, X., Yang, K., Wang, P., & Hong, X. (2015). Energy efficient bandwidth allocation in heterogeneous wireless networks. Mobile Networks and Applications,20(2), 137–146.CrossRef
19.
Zurück zum Zitat Moon, S., Kim, B., Malik, S., You, C., Liu, H., Kim, J. H., et al. (2015). Cell selection and resource allocation for interference management in a macro–picocell heterogeneous network. Wireless Personal Communications,83(3), 1887–1901.CrossRef Moon, S., Kim, B., Malik, S., You, C., Liu, H., Kim, J. H., et al. (2015). Cell selection and resource allocation for interference management in a macro–picocell heterogeneous network. Wireless Personal Communications,83(3), 1887–1901.CrossRef
20.
Zurück zum Zitat Mukherjee, A., De, D., & Deb, P. (2016). Interference management in macro–femtocell and micro–femtocell cluster-based long-term evaluation-advanced green mobile network. IET Communications,10(5), 468–478.CrossRef Mukherjee, A., De, D., & Deb, P. (2016). Interference management in macro–femtocell and micro–femtocell cluster-based long-term evaluation-advanced green mobile network. IET Communications,10(5), 468–478.CrossRef
21.
Zurück zum Zitat Wu, S., Zeng, Z., & Xia, H. (2017). Coalition-based sleep mode and power allocation for energy efficiency in dense small cell networks. IET Communications,11(11), 1662–1670.CrossRef Wu, S., Zeng, Z., & Xia, H. (2017). Coalition-based sleep mode and power allocation for energy efficiency in dense small cell networks. IET Communications,11(11), 1662–1670.CrossRef
22.
Zurück zum Zitat Suárez, L., Nuaymi, L., & Bonnin, J. M. (2015). Energy-efficient BS switching-off and cell topology management for macro/femto environments. Computer Networks,78, 182–201.CrossRef Suárez, L., Nuaymi, L., & Bonnin, J. M. (2015). Energy-efficient BS switching-off and cell topology management for macro/femto environments. Computer Networks,78, 182–201.CrossRef
23.
Zurück zum Zitat Pan, Z., & Shimamoto, S. (2013, April). Cell sizing based energy optimization in joint macro-femto deployments via sleep activation. In 2013 IEEE wireless communications and networking conference (WCNC) (pp. 4765–4770). IEEE. Pan, Z., & Shimamoto, S. (2013, April). Cell sizing based energy optimization in joint macro-femto deployments via sleep activation. In 2013 IEEE wireless communications and networking conference (WCNC) (pp. 4765–4770). IEEE.
24.
Zurück zum Zitat Kim, J., Jeon, W. S., & Jeong, D. G. (2015). Effect of base station-sleeping ratio on energy efficiency in densely deployed femtocell networks. IEEE Communications Letters,19(4), 641–644.CrossRef Kim, J., Jeon, W. S., & Jeong, D. G. (2015). Effect of base station-sleeping ratio on energy efficiency in densely deployed femtocell networks. IEEE Communications Letters,19(4), 641–644.CrossRef
26.
Zurück zum Zitat Trestian, R., Ormond, O., & Muntean, G. M. (2012). Game theory-based network selection: Solutions and challenges. IEEE Communications Surveys & Tutorials,14(4), 1212–1231.CrossRef Trestian, R., Ormond, O., & Muntean, G. M. (2012). Game theory-based network selection: Solutions and challenges. IEEE Communications Surveys & Tutorials,14(4), 1212–1231.CrossRef
27.
Zurück zum Zitat Zhang, H., Jiang, C., Cheng, J., Peng, M., & Leung, V. C. (2017). Game theory for 5G wireless networks. Mobile Networks and Applications,22(3), 526–528.CrossRef Zhang, H., Jiang, C., Cheng, J., Peng, M., & Leung, V. C. (2017). Game theory for 5G wireless networks. Mobile Networks and Applications,22(3), 526–528.CrossRef
28.
Zurück zum Zitat Matsui, T., & Matsui, Y. (2000). A survey of algorithms for calculating power indices of weighted majority games. Journal of the Operations Research Society of Japan,43(1), 71–86.MathSciNetCrossRef Matsui, T., & Matsui, Y. (2000). A survey of algorithms for calculating power indices of weighted majority games. Journal of the Operations Research Society of Japan,43(1), 71–86.MathSciNetCrossRef
29.
Zurück zum Zitat Littlestone, N., & Warmuth, M. K. (1994). The weighted majority algorithm. Information and Computation,108(2), 212–261.MathSciNetCrossRef Littlestone, N., & Warmuth, M. K. (1994). The weighted majority algorithm. Information and Computation,108(2), 212–261.MathSciNetCrossRef
30.
Zurück zum Zitat Ahmad, I., Kaleem, Z., Narmeen, R., Nguyen, L. D., & Ha, D. B. (2019). Quality-of-service aware game theory-based uplink power control for 5G heterogeneous networks. Mobile Networks and Applications,24(2), 556–563.CrossRef Ahmad, I., Kaleem, Z., Narmeen, R., Nguyen, L. D., & Ha, D. B. (2019). Quality-of-service aware game theory-based uplink power control for 5G heterogeneous networks. Mobile Networks and Applications,24(2), 556–563.CrossRef
31.
Zurück zum Zitat Tripathi, P. S., & Prasad, R. (2018). Spectrum for 5G services. Wireless Personal Communications,100(2), 539–555.CrossRef Tripathi, P. S., & Prasad, R. (2018). Spectrum for 5G services. Wireless Personal Communications,100(2), 539–555.CrossRef
32.
Zurück zum Zitat Semov, P. T., Poulkov, V., Mihovska, A., & Prasad, R. (2016). Self-resource allocation and scheduling challenges for heterogeneous networks deployment. Wireless Personal Communications,87(3), 759–777.CrossRef Semov, P. T., Poulkov, V., Mihovska, A., & Prasad, R. (2016). Self-resource allocation and scheduling challenges for heterogeneous networks deployment. Wireless Personal Communications,87(3), 759–777.CrossRef
Metadaten
Titel
Weighted Majority Cooperative Game Based Dynamic Small Cell Clustering and Resource Allocation for 5G Green Mobile Network
verfasst von
Subha Ghosh
Debashis De
Publikationsdatum
21.11.2019
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 3/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-06922-w

Weitere Artikel der Ausgabe 3/2020

Wireless Personal Communications 3/2020 Zur Ausgabe

Neuer Inhalt