Skip to main content
Erschienen in: Experiments in Fluids 3/2019

01.03.2019 | Research Article

Wet gas over-reading correction for ultrasonic flow meters

verfasst von: Dennis S. van Putten, Brian T. Dsouza

Erschienen in: Experiments in Fluids | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Oil and gas operators rely on accurate flow rate measurements to optimize production and generate more from their reservoirs, particularly in wet gas fields. A cost-effective solution for these flow measurements is the use of single-phase measurement technologies with an over-reading correction that corrects the gas flow rate for the presence of the liquid phase. Traditional flow measurement technologies in wet gas fields are Venturi meters and orifice plate meters that involve differential pressure measurements. Over the years, a higher installed base of ultrasonic flow meters is observed in wet gas fields. Ultrasonic flow meters have advantages over conventional wet gas technologies; however, an over-reading correction method for this measurement technology has not yet been derived. The current work is a first attempt to devise a correction method based on a large data set of ultrasonic measurements in horizontal configuration at conditions comparable to field applications. The correction method is a physical model for the gas void fraction and is based on the dominant dimensionless numbers in wet gas flows that originate from the fundamental equations of multiphase flow dynamics. This approach leads to the definition of the over-reading correction in different flow regimes in terms of these dimensionless numbers and is supported by an extensive set of measurement data and evidence from visual observation of the flow patterns. The correction method is capable of correcting the ultrasonic over-reading with a resulting uncertainty of about 4% for a 95% confidence interval for a range of conditions relevant to the oil and gas industry.

Graphical abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Abbagoni B, Yeung H (2016) Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic doppler sensor and a neural network. Meas Sci Technol 27:084002CrossRef Abbagoni B, Yeung H (2016) Non-invasive classification of gas–liquid two-phase horizontal flow regimes using an ultrasonic doppler sensor and a neural network. Meas Sci Technol 27:084002CrossRef
Zurück zum Zitat Abdul-Majeed G (1996) Liquid holdup in horizontal two-phase gas–liquid flow. J Pet Sci Eng 15:271–280CrossRef Abdul-Majeed G (1996) Liquid holdup in horizontal two-phase gas–liquid flow. J Pet Sci Eng 15:271–280CrossRef
Zurück zum Zitat Badens E et al (2005) Laminar jet dispersion and jet atomization in pressurized carbon dioxide. J Supercrit Fluids 36:81–90CrossRef Badens E et al (2005) Laminar jet dispersion and jet atomization in pressurized carbon dioxide. J Supercrit Fluids 36:81–90CrossRef
Zurück zum Zitat Barnea D, Taitel Y (1993) Kelvin–Helmholtz stability criteria for stratified flow: viscous versus non-viscous (inviscid) approaches. Int J Multiph Flow 19:639–649CrossRef Barnea D, Taitel Y (1993) Kelvin–Helmholtz stability criteria for stratified flow: viscous versus non-viscous (inviscid) approaches. Int J Multiph Flow 19:639–649CrossRef
Zurück zum Zitat Buckingham E (1914) On physically similar systems; illustrations of the use of dimensional equations. Phys Rev 4:345–376CrossRef Buckingham E (1914) On physically similar systems; illustrations of the use of dimensional equations. Phys Rev 4:345–376CrossRef
Zurück zum Zitat Figueiredo M et al (2016) The use of an ultrasonic technique an neural networks for identification of the flow pattern and measurement of the gas volume fraction in multiphase flows. Exp Therm Fluid Sci 70:29–50CrossRef Figueiredo M et al (2016) The use of an ultrasonic technique an neural networks for identification of the flow pattern and measurement of the gas volume fraction in multiphase flows. Exp Therm Fluid Sci 70:29–50CrossRef
Zurück zum Zitat Ishii M (2001) Thermo-fluid dynamic theory of two-phase flow, 2nd edn. Springer, Berlin Ishii M (2001) Thermo-fluid dynamic theory of two-phase flow, 2nd edn. Springer, Berlin
Zurück zum Zitat ISO-TC193 S (2015) ISO/TR 12748:2015 Natural gas Wet gas flow measurement in natural gas operations. International Organization for Standardization, Geneva ISO-TC193 S (2015) ISO/TR 12748:2015 Natural gas Wet gas flow measurement in natural gas operations. International Organization for Standardization, Geneva
Zurück zum Zitat Kinsler L et al (2000) Fundamentals of acoustics, 4th edn. Wiley, New YorkMATH Kinsler L et al (2000) Fundamentals of acoustics, 4th edn. Wiley, New YorkMATH
Zurück zum Zitat Lin Z (1982) Two-phase flow measurements with sharp-edged orifices. Int J Multiph Flow 8:683–693CrossRef Lin Z (1982) Two-phase flow measurements with sharp-edged orifices. Int J Multiph Flow 8:683–693CrossRef
Zurück zum Zitat Liu W (2018) Dispersed oil–water two-phase flow measurement based on pulse-wave ultrasonic doppler coupled with electrical sensors. IEEE Trans Instrum Meas 9:2129–2142CrossRef Liu W (2018) Dispersed oil–water two-phase flow measurement based on pulse-wave ultrasonic doppler coupled with electrical sensors. IEEE Trans Instrum Meas 9:2129–2142CrossRef
Zurück zum Zitat Murai Y (2010) Ultrasonic detection of moving interfaces in gas–liquid two-phase flow. Flow Meas Instrum 21:356–366CrossRef Murai Y (2010) Ultrasonic detection of moving interfaces in gas–liquid two-phase flow. Flow Meas Instrum 21:356–366CrossRef
Zurück zum Zitat Murakawa H et al (2008) Application of ultrasonic milti-wave method for two-phase bubbly and slug flows. Flow Meas Instrum 19:205–213CrossRef Murakawa H et al (2008) Application of ultrasonic milti-wave method for two-phase bubbly and slug flows. Flow Meas Instrum 19:205–213CrossRef
Zurück zum Zitat Olszowski S (1976) Measurement of dispersed two-phase gas–liquid flow by cross correlation of modulated ultrasonic signals. Int J Multiph Flow 2:537–548CrossRef Olszowski S (1976) Measurement of dispersed two-phase gas–liquid flow by cross correlation of modulated ultrasonic signals. Int J Multiph Flow 2:537–548CrossRef
Zurück zum Zitat Spedding P, Spence D (1993) Flow regimes in two-phase gas–liquid flow. Int J Multiph Flow 19:245–280CrossRef Spedding P, Spence D (1993) Flow regimes in two-phase gas–liquid flow. Int J Multiph Flow 19:245–280CrossRef
Zurück zum Zitat Steven R (2002) Wet gas metering with horizontally mounted venturi meter. Flow Meas Instrum 12:361–372CrossRef Steven R (2002) Wet gas metering with horizontally mounted venturi meter. Flow Meas Instrum 12:361–372CrossRef
Zurück zum Zitat Tae-Hwan A et al (2015) Void fraction prediction for separated flows in the nearly horizontal tubes. Nucl Eng Technol 47:669–677CrossRef Tae-Hwan A et al (2015) Void fraction prediction for separated flows in the nearly horizontal tubes. Nucl Eng Technol 47:669–677CrossRef
Zurück zum Zitat Taitel Y, Dukler A (1976) Model for predicting flow regime transitions in horizontal and near horizontal gas–liquid flow. AIChE 22:47–55CrossRef Taitel Y, Dukler A (1976) Model for predicting flow regime transitions in horizontal and near horizontal gas–liquid flow. AIChE 22:47–55CrossRef
Zurück zum Zitat Temkin S, Dobbins R (1966) Attenuation and dispersion of sound by particulate-relaxation processes. J Acoust Soc Am 40:317–324CrossRef Temkin S, Dobbins R (1966) Attenuation and dispersion of sound by particulate-relaxation processes. J Acoust Soc Am 40:317–324CrossRef
Zurück zum Zitat Tzotzi C, Andritsos N (1996) Interfacial shear stress in wavy stratified gas–liquid flow in horizontal pipes. Int J Multiph Flow 54:43–54CrossRef Tzotzi C, Andritsos N (1996) Interfacial shear stress in wavy stratified gas–liquid flow in horizontal pipes. Int J Multiph Flow 54:43–54CrossRef
Zurück zum Zitat Vatanakul M et al (2005) Ultrasonic technique for measuring phase holdups in multiphase systems. Chem Eng Commun 192:630–646CrossRef Vatanakul M et al (2005) Ultrasonic technique for measuring phase holdups in multiphase systems. Chem Eng Commun 192:630–646CrossRef
Zurück zum Zitat Weisman J et al (1979) Effects of fluid properties and pipe diameter on two-phase flow patterns in horizontal lines. Int J Multiph Flow 5:437–462CrossRef Weisman J et al (1979) Effects of fluid properties and pipe diameter on two-phase flow patterns in horizontal lines. Int J Multiph Flow 5:437–462CrossRef
Zurück zum Zitat Xing L et al (2014) A combination method for metering gas-liquid two-phase flows of low liquid loading applying ultrasonic and coriolis flowmeters. Flow Meas Instrum 37:135–143CrossRef Xing L et al (2014) A combination method for metering gas-liquid two-phase flows of low liquid loading applying ultrasonic and coriolis flowmeters. Flow Meas Instrum 37:135–143CrossRef
Zurück zum Zitat Xu Y et al (2017) Over-reading modeling of the ultrasonic flow meter in wet gas measurement. Measurement 98:17–24CrossRef Xu Y et al (2017) Over-reading modeling of the ultrasonic flow meter in wet gas measurement. Measurement 98:17–24CrossRef
Zurück zum Zitat Zanker K, Brown G (2000) The performance of a multi-path ultrasonic meter with wet gas. In: Proceedings of the 18th North Sea flow measurement workshop, paper 6.2, pp 1–14 Zanker K, Brown G (2000) The performance of a multi-path ultrasonic meter with wet gas. In: Proceedings of the 18th North Sea flow measurement workshop, paper 6.2, pp 1–14
Zurück zum Zitat Zheng Y, Zhang Q (2004) Simultaneous measurement of gas and solid holdups in multiphase systems using ultrasonic technique. Chem Eng Sci 59:3505–3514CrossRef Zheng Y, Zhang Q (2004) Simultaneous measurement of gas and solid holdups in multiphase systems using ultrasonic technique. Chem Eng Sci 59:3505–3514CrossRef
Zurück zum Zitat Zhou H et al (2018) Multipath ultrasonic gas flow-meter based on multiple reference waves. Ultrasonics 82:145–152CrossRef Zhou H et al (2018) Multipath ultrasonic gas flow-meter based on multiple reference waves. Ultrasonics 82:145–152CrossRef
Metadaten
Titel
Wet gas over-reading correction for ultrasonic flow meters
verfasst von
Dennis S. van Putten
Brian T. Dsouza
Publikationsdatum
01.03.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Experiments in Fluids / Ausgabe 3/2019
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-019-2693-6

Weitere Artikel der Ausgabe 3/2019

Experiments in Fluids 3/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.