Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

04.06.2018

What can Android mobile app developers do about the energy consumption of machine learning?

Zeitschrift:
Empirical Software Engineering
Autoren:
Andrea McIntosh, Safwat Hassan, Abram Hindle

Abstract

Machine learning is a popular method of learning functions from data to represent and to classify sensor inputs, multimedia, emails, and calendar events. Smartphone applications have been integrating more and more intelligence in the form of machine learning. Machine learning functionality now appears on most smartphones as voice recognition, spell checking, word disambiguation, face recognition, translation, spatial reasoning, and even natural language summarization. Excited app developers who want to use machine learning on mobile devices face one serious constraint that they did not face on desktop computers or cloud virtual machines: the end-user’s mobile device has limited battery life, thus computationally intensive tasks can harm end users’ phone availability by draining batteries of their stored energy. Currently, there are few guidelines for developers who want to employ machine learning on mobile devices yet are concerned about software energy consumption of their applications. In this paper, we combine empirical measurements of different machine learning algorithm implementations with complexity theory to provide concrete and theoretically grounded recommendations to developers who want to employ machine learning on smartphones. We conclude that some implementations of algorithms, such as J48, MLP, and SMO, do generally perform better than others in terms of energy consumption and accuracy, and that energy consumption is well-correlated to algorithmic complexity. However, to achieve optimal results a developer must consider their specific application as many factors — dataset size, number of data attributes, whether the model will require updating, etc. — affect which machine learning algorithm and implementation will provide the best results.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit dem Wirtschafts-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 45.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit dem Technik-Abo erhalten Sie Zugriff auf über 1 Mio. Dokumente aus mehr als 40.000 Fachbüchern und 300 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit dem Kombi-Abo erhalten Sie vollen Zugriff auf über 1,8 Mio. Dokumente aus mehr als 61.000 Fachbüchern und rund 500 Fachzeitschriften aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe

Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Premium Partner

Neuer Inhalt

BranchenIndex Online

Die B2B-Firmensuche für Industrie und Wirtschaft: Kostenfrei in Firmenprofilen nach Lieferanten, Herstellern, Dienstleistern und Händlern recherchieren.

Whitepaper

- ANZEIGE -

Product Lifecycle Management im Konzernumfeld – Herausforderungen, Lösungsansätze und Handlungsempfehlungen

Für produzierende Unternehmen hat sich Product Lifecycle Management in den letzten Jahrzehnten in wachsendem Maße zu einem strategisch wichtigen Ansatz entwickelt. Forciert durch steigende Effektivitäts- und Effizienzanforderungen stellen viele Unternehmen ihre Product Lifecycle Management-Prozesse und -Informationssysteme auf den Prüfstand. Der vorliegende Beitrag beschreibt entlang eines etablierten Analyseframeworks Herausforderungen und Lösungsansätze im Product Lifecycle Management im Konzernumfeld.
Jetzt gratis downloaden!

Bildnachweise