Skip to main content

2015 | OriginalPaper | Buchkapitel

6. What physical effects are involved?

verfasst von : jüri Engelbrecht

Erschienen in: Questions About Elastic Waves

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the previous chapters, attention was given to deriving complicated wave equations or evolution equations. One should certainly ask: “why equations”? Ian Stewart [230] asks this question and gives the answer that “equations are the lifeblood of mathematics, science and technology”, and adds that “… they reveal deep and beautiful patterns and regularities”.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Abe, K., Satofuka, N.: Recurrence of initial state of nonlinear ion waves. Phys. Fluids 24(6), 1045–1048 (1981)CrossRefMathSciNet Abe, K., Satofuka, N.: Recurrence of initial state of nonlinear ion waves. Phys. Fluids 24(6), 1045–1048 (1981)CrossRefMathSciNet
2.
Zurück zum Zitat Ablowitz, M.J.: Nonlinear Dispersive Waves. Asymptotic Analysis and Solitons. Cambridge University Press, Cambridge (2011)CrossRefMATH Ablowitz, M.J.: Nonlinear Dispersive Waves. Asymptotic Analysis and Solitons. Cambridge University Press, Cambridge (2011)CrossRefMATH
3.
Zurück zum Zitat Ablowitz, M., Clarkson, P.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)MATH Ablowitz, M., Clarkson, P.: Solitons, Nonlinear Evolution Equations and Inverse Scattering. Cambridge University Press, Cambridge (1991)MATH
7.
Zurück zum Zitat Andrianov, I.V., Danishevskyy, V.V., Ryzhkov, O.I., Weichert, D.: Dynamic homogenization and wave propagation in a nonlinear 1D composite material. Wave Motion 50(2), 271–281 (2013)CrossRefMathSciNet Andrianov, I.V., Danishevskyy, V.V., Ryzhkov, O.I., Weichert, D.: Dynamic homogenization and wave propagation in a nonlinear 1D composite material. Wave Motion 50(2), 271–281 (2013)CrossRefMathSciNet
10.
Zurück zum Zitat Askar, A.: Lattice Dynamical Foundations of Continuum Theories. World Scientific, Singapore (1986)CrossRef Askar, A.: Lattice Dynamical Foundations of Continuum Theories. World Scientific, Singapore (1986)CrossRef
15.
Zurück zum Zitat Benton, E.R., Platzmann, G.W.: A table of solutions of the one-dimensional Burgers equation. Quart. Appl. Math. 30, 195–212 (1972)MATHMathSciNet Benton, E.R., Platzmann, G.W.: A table of solutions of the one-dimensional Burgers equation. Quart. Appl. Math. 30, 195–212 (1972)MATHMathSciNet
17.
Zurück zum Zitat Berezovski, A., Engelbrecht, J., Maugin, G.A.: Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, Singapore (2008)MATH Berezovski, A., Engelbrecht, J., Maugin, G.A.: Numerical Simulation of Waves and Fronts in Inhomogeneous Solids. World Scientific, Singapore (2008)MATH
18.
Zurück zum Zitat Berezovski, A., Engelbrecht, J., Peets, T.: Multiscale modeling of microstructured solids. Mech. Res. Commun. 37(6), 531–534 (2010)CrossRefMATH Berezovski, A., Engelbrecht, J., Peets, T.: Multiscale modeling of microstructured solids. Mech. Res. Commun. 37(6), 531–534 (2010)CrossRefMATH
19.
Zurück zum Zitat Berezovski, A., Engelbrecht, J., Berezovski, M.: Waves in microstructured solids: a unified viewpoint of modeling. Acta Mech. 220(1–4), 349–363 (2011)CrossRefMATH Berezovski, A., Engelbrecht, J., Berezovski, M.: Waves in microstructured solids: a unified viewpoint of modeling. Acta Mech. 220(1–4), 349–363 (2011)CrossRefMATH
20.
Zurück zum Zitat Berezovski, A., Engelbrecht, J., Maugin, G.A.: Generalized thermomechanics with dual internal variables. Arch. Appl. Mech. 81(2), 229–240 (2011)CrossRefMATH Berezovski, A., Engelbrecht, J., Maugin, G.A.: Generalized thermomechanics with dual internal variables. Arch. Appl. Mech. 81(2), 229–240 (2011)CrossRefMATH
22.
Zurück zum Zitat Berezovski, A., Engelbrecht, J., Salupere, A., Tamm, K., Peets, T., Berezovski, M.: Dispersive waves in microstructured solids. Int. J. Solids Struct. 50(11), 1981–1990 (2013)CrossRef Berezovski, A., Engelbrecht, J., Salupere, A., Tamm, K., Peets, T., Berezovski, M.: Dispersive waves in microstructured solids. Int. J. Solids Struct. 50(11), 1981–1990 (2013)CrossRef
25.
Zurück zum Zitat Bhatnagar, P.L.: Nonlinear Waves in One-Dimensional Dispersive Systems, vol. 142. Clarendon Press, Oxford (1979)MATH Bhatnagar, P.L.: Nonlinear Waves in One-Dimensional Dispersive Systems, vol. 142. Clarendon Press, Oxford (1979)MATH
33.
Zurück zum Zitat Braun, M., Randrüüt, M.: On periodic waves governed by the extended Korteweg-de Vries equation. Proc. Estonian Acad. Sci. 59(2), 113–138 (2010)CrossRef Braun, M., Randrüüt, M.: On periodic waves governed by the extended Korteweg-de Vries equation. Proc. Estonian Acad. Sci. 59(2), 113–138 (2010)CrossRef
35.
Zurück zum Zitat Brillouin, L.: Wave Propagation in Periodic Structures. Dover, New York (1953)MATH Brillouin, L.: Wave Propagation in Periodic Structures. Dover, New York (1953)MATH
36.
Zurück zum Zitat Brillouin, L.: Wave Propagation and Group Velocity. Academic, New York (1960)MATH Brillouin, L.: Wave Propagation and Group Velocity. Academic, New York (1960)MATH
37.
Zurück zum Zitat Caenepeel, S., Malfliet, W.: Internal structure of the two-soliton solution of the KdV equation. Wave Motion 7(4), 299–305 (1985)CrossRefMATHMathSciNet Caenepeel, S., Malfliet, W.: Internal structure of the two-soliton solution of the KdV equation. Wave Motion 7(4), 299–305 (1985)CrossRefMATHMathSciNet
47.
Zurück zum Zitat Christov, I.C.: Hidden solitons in the Zabusky–Kruskal experiment: analysis using the periodic, inverse scattering transform. Math. Comput. Simul. 82(6), 1069–1078 (2012)CrossRefMATHMathSciNet Christov, I.C.: Hidden solitons in the Zabusky–Kruskal experiment: analysis using the periodic, inverse scattering transform. Math. Comput. Simul. 82(6), 1069–1078 (2012)CrossRefMATHMathSciNet
48.
Zurück zum Zitat Christov, C.I., Maugin, G.A., Porubov, A.V.: On Boussinesq’s paradigm in nonlinear wave propagation. C. R. Mecanique 335(9), 521–535 (2007)CrossRefMATH Christov, C.I., Maugin, G.A., Porubov, A.V.: On Boussinesq’s paradigm in nonlinear wave propagation. C. R. Mecanique 335(9), 521–535 (2007)CrossRefMATH
49.
Zurück zum Zitat Cole, J.D.: On a quasi-linear parabolic equation occurring in aerodynamics. Q. Appl. Math. 9(3), 225–236 (1951)MATH Cole, J.D.: On a quasi-linear parabolic equation occurring in aerodynamics. Q. Appl. Math. 9(3), 225–236 (1951)MATH
57.
Zurück zum Zitat Dey, B., Khare, A., Kumar, C.N.: Stationary solitons of the fifth order KdV-type equations and their stabilization. Phys. Lett. A 223(6), 449–452 (1996)CrossRefMATHMathSciNet Dey, B., Khare, A., Kumar, C.N.: Stationary solitons of the fifth order KdV-type equations and their stabilization. Phys. Lett. A 223(6), 449–452 (1996)CrossRefMATHMathSciNet
58.
Zurück zum Zitat Dogariu, A., Kuzmich, A., Wang, L.: Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity. Phys. Rev. A63(5), 053806 (2001)CrossRef Dogariu, A., Kuzmich, A., Wang, L.: Transparent anomalous dispersion and superluminal light-pulse propagation at a negative group velocity. Phys. Rev. A63(5), 053806 (2001)CrossRef
59.
Zurück zum Zitat Drazin, P.G., Johnson, R.S.: Solitons: An Introduction. Cambridge University Press, Cambridge (1989)CrossRefMATH Drazin, P.G., Johnson, R.S.: Solitons: An Introduction. Cambridge University Press, Cambridge (1989)CrossRefMATH
62.
Zurück zum Zitat Engelbrecht, J.: Nonlinear Wave Processes of Deformation in Solids. Pitman, London (1983)MATH Engelbrecht, J.: Nonlinear Wave Processes of Deformation in Solids. Pitman, London (1983)MATH
66.
Zurück zum Zitat Engelbrecht, J.: Nonlinear Wave Dynamics: Complexity and Simplicity. Kluwer, Dordrecht (1997)CrossRefMATH Engelbrecht, J.: Nonlinear Wave Dynamics: Complexity and Simplicity. Kluwer, Dordrecht (1997)CrossRefMATH
67.
Zurück zum Zitat Engelbrecht, J.: On the paper by Zabusky and Kruskal. In: Schiehlen, W., Wijngaarden, L., (eds.) Mechanics at the Turn of the Century, pp. 13–14. Shaker Verlag, Aachen (2000) Engelbrecht, J.: On the paper by Zabusky and Kruskal. In: Schiehlen, W., Wijngaarden, L., (eds.) Mechanics at the Turn of the Century, pp. 13–14. Shaker Verlag, Aachen (2000)
70.
Zurück zum Zitat Engelbrecht, J., Berezovski, A.: Reflections on mathematical models of deformation waves in elastic microstructured solids. Math. Mech. Complex Syst. 3-1, 43–82 (2015), doi: 10.2140/memocs 2015.3.43 Engelbrecht, J., Berezovski, A.: Reflections on mathematical models of deformation waves in elastic microstructured solids. Math. Mech. Complex Syst. 3-1, 43–82 (2015), doi: 10.2140/memocs 2015.3.43
71.
Zurück zum Zitat Engelbrecht, J., Maugin, G.: Deformation waves in thermoelastic media and the concept of internal variables. Arch. Appl. Mech. 66(3), 200–207 (1996)CrossRefMATH Engelbrecht, J., Maugin, G.: Deformation waves in thermoelastic media and the concept of internal variables. Arch. Appl. Mech. 66(3), 200–207 (1996)CrossRefMATH
73.
Zurück zum Zitat Engelbrecht, J., Salupere, A.: On the problem of periodicity and hidden solitons for the KdV model. Chaos 15, 015114 (2005)CrossRef Engelbrecht, J., Salupere, A.: On the problem of periodicity and hidden solitons for the KdV model. Chaos 15, 015114 (2005)CrossRef
75.
Zurück zum Zitat Engelbrecht, J., Berezovski, A., Pastrone, F., Braun, M.: Waves in microstructured materials and dispersion. Philos. Mag. 85(33–35), 4127–4141 (2005)CrossRef Engelbrecht, J., Berezovski, A., Pastrone, F., Braun, M.: Waves in microstructured materials and dispersion. Philos. Mag. 85(33–35), 4127–4141 (2005)CrossRef
76.
Zurück zum Zitat Engelbrecht, J., Pastrone, F., Braun, M., Berezovski, A.: Hierarchies of waves in nonclassical materials. In: Delsanto, P.P. (ed.) Universality of Nonclassical Nonlinearity: Application to Non-destructive Evaluation and Ultrasonics, pp. 29–47. Springer, New York (2007) Engelbrecht, J., Pastrone, F., Braun, M., Berezovski, A.: Hierarchies of waves in nonclassical materials. In: Delsanto, P.P. (ed.) Universality of Nonclassical Nonlinearity: Application to Non-destructive Evaluation and Ultrasonics, pp. 29–47. Springer, New York (2007)
78.
Zurück zum Zitat Engelbrecht, J., Salupere, A., Tamm, K.: Waves in microstructured solids and the Boussinesq paradigm. Wave Motion 48(8), 717–726 (2011)CrossRefMathSciNet Engelbrecht, J., Salupere, A., Tamm, K.: Waves in microstructured solids and the Boussinesq paradigm. Wave Motion 48(8), 717–726 (2011)CrossRefMathSciNet
79.
Zurück zum Zitat Engelbrecht, J., Tamm, K., Peets, T.: On mathematical modelling of solitary pulses in cylindrical biomembranes. Biomech. Model. Mechanobiol. 14(1), 159–167 (2015)CrossRef Engelbrecht, J., Tamm, K., Peets, T.: On mathematical modelling of solitary pulses in cylindrical biomembranes. Biomech. Model. Mechanobiol. 14(1), 159–167 (2015)CrossRef
82.
Zurück zum Zitat Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–435 (1972)CrossRefMATH Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10, 425–435 (1972)CrossRefMATH
86.
Zurück zum Zitat Erofeyev, V.I.: Wave Processes in Solids with Microstructure. World Scientific, Singapore (2003)MATH Erofeyev, V.I.: Wave Processes in Solids with Microstructure. World Scientific, Singapore (2003)MATH
90.
Zurück zum Zitat Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)CrossRef Gardner, C.S., Greene, J.M., Kruskal, M.D., Miura, R.M.: Method for solving the Korteweg-de Vries equation. Phys. Rev. Lett. 19, 1095–1097 (1967)CrossRef
93.
94.
Zurück zum Zitat Goda, K.: Numerical studies on recurrence of the Korteweg-de Vries equation. J. Phys. Soc. Jpn. 42(3), 1040–1046 (1977)CrossRefMathSciNet Goda, K.: Numerical studies on recurrence of the Korteweg-de Vries equation. J. Phys. Soc. Jpn. 42(3), 1040–1046 (1977)CrossRefMathSciNet
96.
Zurück zum Zitat Grimshaw, R., Pelinovsky, E., Talipova, T.: Solitary wave transformation in a medium with sign-variable quadratic nonlinearity and cubic nonlinearity. Physica D 132(1–2), 40–62 (1999)CrossRefMATHMathSciNet Grimshaw, R., Pelinovsky, E., Talipova, T.: Solitary wave transformation in a medium with sign-variable quadratic nonlinearity and cubic nonlinearity. Physica D 132(1–2), 40–62 (1999)CrossRefMATHMathSciNet
101.
Zurück zum Zitat Hansen, P., Lonngren, K.: On the prediction of the number of solitons excited by an arbitrary potential: an observation from inverse scattering. Physica D 68(1), 12–17 (1993)CrossRefMATHMathSciNet Hansen, P., Lonngren, K.: On the prediction of the number of solitons excited by an arbitrary potential: an observation from inverse scattering. Physica D 68(1), 12–17 (1993)CrossRefMATHMathSciNet
108.
Zurück zum Zitat Hopf, E.: The partial differential equation u t + uu x  = μ u xxx . Commun. Pure Appl. Math. 3, 201–230 (1950) Hopf, E.: The partial differential equation u t + uu x  = μ u xxx . Commun. Pure Appl. Math. 3, 201–230 (1950)
109.
Zurück zum Zitat Huang, G., Sun, C.: A higher-order continuum model for elastic media with multiphased microstructure. Mech. Adv. Mater. Struct. 15(8), 550–557 (2008)CrossRef Huang, G., Sun, C.: A higher-order continuum model for elastic media with multiphased microstructure. Mech. Adv. Mater. Struct. 15(8), 550–557 (2008)CrossRef
112.
Zurück zum Zitat Ilison, O.: Solitons and solitary waves in media with higher order dispersive and nonlinear effects. Ph.D. thesis of Tallinn University of Technology, Natural and Exact Sciences. TUT Press, Tallinn (2005) Ilison, O.: Solitons and solitary waves in media with higher order dispersive and nonlinear effects. Ph.D. thesis of Tallinn University of Technology, Natural and Exact Sciences. TUT Press, Tallinn (2005)
113.
Zurück zum Zitat Ilison, O., Salupere, A.: On the propagation of solitary pulses in microstructured materials. Chaos Solitons Fractals 29(1), 202–214 (2006)CrossRefMATHMathSciNet Ilison, O., Salupere, A.: On the propagation of solitary pulses in microstructured materials. Chaos Solitons Fractals 29(1), 202–214 (2006)CrossRefMATHMathSciNet
114.
Zurück zum Zitat Ilison, L., Salupere, A.: Propagation of sech2-type solitary waves in hierarchical KdV-type systems. Math. Comput. Simul. 79(11), 3314–3327 (2009)CrossRefMATHMathSciNet Ilison, L., Salupere, A.: Propagation of sech2-type solitary waves in hierarchical KdV-type systems. Math. Comput. Simul. 79(11), 3314–3327 (2009)CrossRefMATHMathSciNet
117.
118.
Zurück zum Zitat Janno, J., Engelbrecht, J.: Microstructured Materials: Inverse Problems. Springer, Berlin (2011)CrossRef Janno, J., Engelbrecht, J.: Microstructured Materials: Inverse Problems. Springer, Berlin (2011)CrossRef
119.
Zurück zum Zitat Jeffrey, A., Kawahara, T.: Asymptotic Methods in Nonlinear Wave Theory, vol. 1. Pitman, Boston (1982)MATH Jeffrey, A., Kawahara, T.: Asymptotic Methods in Nonlinear Wave Theory, vol. 1. Pitman, Boston (1982)MATH
120.
Zurück zum Zitat Jeffrey, A., Mohamad, M.: Travelling wave solutions to a higher order KdV equation. Chaos Solitons Fractals 1(2), 187–194 (1991)CrossRefMATHMathSciNet Jeffrey, A., Mohamad, M.: Travelling wave solutions to a higher order KdV equation. Chaos Solitons Fractals 1(2), 187–194 (1991)CrossRefMATHMathSciNet
124.
Zurück zum Zitat Kalda, J.: Periodic solutions of the Korteweg-de Vries equation and the number of eigenvalues. J. Phys. Soc. Jpn. 44(1), 88–95 (1995)MATHMathSciNet Kalda, J.: Periodic solutions of the Korteweg-de Vries equation and the number of eigenvalues. J. Phys. Soc. Jpn. 44(1), 88–95 (1995)MATHMathSciNet
125.
Zurück zum Zitat Karpman, V.: Nonlinear Waves in Dispersive Media. Nauka Press, Moscow (1973, in Russian) Karpman, V.: Nonlinear Waves in Dispersive Media. Nauka Press, Moscow (1973, in Russian)
129.
Zurück zum Zitat Kawahara, T.: Oscillatory solitary waves in dispersive media. J. Phys. Soc. Jpn. 33(1), 260–264 (1972)CrossRef Kawahara, T.: Oscillatory solitary waves in dispersive media. J. Phys. Soc. Jpn. 33(1), 260–264 (1972)CrossRef
133.
Zurück zum Zitat Kivshar, Y.S., Malomed, B.A.: Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61(4), 763 (1989)CrossRef Kivshar, Y.S., Malomed, B.A.: Dynamics of solitons in nearly integrable systems. Rev. Mod. Phys. 61(4), 763 (1989)CrossRef
135.
Zurück zum Zitat Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39(240), 422–443 (1895) Korteweg, D.J., de Vries, G.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Philos. Mag. 39(240), 422–443 (1895)
137.
Zurück zum Zitat Kreiss, H.O., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24(3), 199–215 (1972)CrossRefMathSciNet Kreiss, H.O., Oliger, J.: Comparison of accurate methods for the integration of hyperbolic equations. Tellus 24(3), 199–215 (1972)CrossRefMathSciNet
139.
Zurück zum Zitat Kruskal, M.D.: An ODE to a PDE: glories of the KdV equation. An appreciation of the equation on its 100th birthday! In: Hazewinkel, M., Capel, H.W., Jager, E.M.d. (eds.) Proceedings of KdV’95, pp. 127–132. Springer, Berlin (1995) Kruskal, M.D.: An ODE to a PDE: glories of the KdV equation. An appreciation of the equation on its 100th birthday! In: Hazewinkel, M., Capel, H.W., Jager, E.M.d. (eds.) Proceedings of KdV’95, pp. 127–132. Springer, Berlin (1995)
142.
Zurück zum Zitat Lamb, G.L., Jr.: Elements of Soliton Theory, vol. 1, p. 29. Wiley, New York (1980) Lamb, G.L., Jr.: Elements of Soliton Theory, vol. 1, p. 29. Wiley, New York (1980)
143.
150.
Zurück zum Zitat Maranganti, R., Sharma, P.: A novel atomistic approach to determine strain-gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (ir) relevance for nanotechnologies. J. Mech. Phys. Solids 55, 1823–1852 (2007)CrossRefMATH Maranganti, R., Sharma, P.: A novel atomistic approach to determine strain-gradient elasticity constants: tabulation and comparison for various metals, semiconductors, silica, polymers and the (ir) relevance for nanotechnologies. J. Mech. Phys. Solids 55, 1823–1852 (2007)CrossRefMATH
158.
Zurück zum Zitat Maugin, G.A.: Nonlinear Waves in Elastic Crystals. Oxford University Press, Oxford (1999)MATH Maugin, G.A.: Nonlinear Waves in Elastic Crystals. Oxford University Press, Oxford (1999)MATH
160.
Zurück zum Zitat Maugin, G.A.: Solitons in elastic solids (1938–2010). Mech. Res. Commun. 38(5), 341–349 (2011)CrossRefMATH Maugin, G.A.: Solitons in elastic solids (1938–2010). Mech. Res. Commun. 38(5), 341–349 (2011)CrossRefMATH
162.
Zurück zum Zitat Maugin, G.A., Christov, C.: Nonlinear duality between elastic waves and quasi-particles in microstructured solids. Proc. Estonian Acad. Sci. Phys. Math. 46(1–2), 78–84 (1997)MATH Maugin, G.A., Christov, C.: Nonlinear duality between elastic waves and quasi-particles in microstructured solids. Proc. Estonian Acad. Sci. Phys. Math. 46(1–2), 78–84 (1997)MATH
165.
Zurück zum Zitat Metrikine, A.V., Askes, H.: One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure: part 1: generic formulation. Eur. J. Mech. 21, 555–572 (2002)CrossRefMATH Metrikine, A.V., Askes, H.: One-dimensional dynamically consistent gradient elasticity models derived from a discrete microstructure: part 1: generic formulation. Eur. J. Mech. 21, 555–572 (2002)CrossRefMATH
166.
Zurück zum Zitat Meyers, R. (ed.): Encyclopedia of Complexity and Systems Science. Springer, New York (2009)MATH Meyers, R. (ed.): Encyclopedia of Complexity and Systems Science. Springer, New York (2009)MATH
173.
Zurück zum Zitat Nagashima, H.: Chaos in a nonlinear wave equation with higher order dispersion. Phys. Lett. A 105, 439–442 (1984)CrossRefMathSciNet Nagashima, H.: Chaos in a nonlinear wave equation with higher order dispersion. Phys. Lett. A 105, 439–442 (1984)CrossRefMathSciNet
178.
Zurück zum Zitat Newman, W.I., Campbell, D.K., Hyman, J.M.: Identifying coherent structures in nonlinear wave propagation. Chaos 1(1), 77–94 (1991)CrossRefMATH Newman, W.I., Campbell, D.K., Hyman, J.M.: Identifying coherent structures in nonlinear wave propagation. Chaos 1(1), 77–94 (1991)CrossRefMATH
183.
Zurück zum Zitat Nunziato, J.W., Walsh, E.K., Schuler, R.W., Barker, L.M.: Wave propagation in nonlinear viscoelastic solids. In: Flügge, S. (ed.) Encyclopedia of Physics, pp. 1–108. Springer, Berlin (1974) Nunziato, J.W., Walsh, E.K., Schuler, R.W., Barker, L.M.: Wave propagation in nonlinear viscoelastic solids. In: Flügge, S. (ed.) Encyclopedia of Physics, pp. 1–108. Springer, Berlin (1974)
186.
Zurück zum Zitat Okrouhlík, M.: The quest for truth, particularly in mechanics. Estonian J. Eng. 19, 253–272 (2013)CrossRef Okrouhlík, M.: The quest for truth, particularly in mechanics. Estonian J. Eng. 19, 253–272 (2013)CrossRef
187.
190.
Zurück zum Zitat Papargyri-Beskou, S., Polyzos, D., Beskos, D.: Wave dispersion in gradient elastic solids and structures: a unified treatment. Int. J. Solids Struct. 46(21), 3751–3759 (2009)CrossRefMATH Papargyri-Beskou, S., Polyzos, D., Beskos, D.: Wave dispersion in gradient elastic solids and structures: a unified treatment. Int. J. Solids Struct. 46(21), 3751–3759 (2009)CrossRefMATH
192.
Zurück zum Zitat Peets, T.: Dispersion analysis of wave motion in microstructured solids. Ph.D. thesis of Tallinn University of Technology, Natural and Exact Sciences. TUT Press, Tallinn (2011) Peets, T.: Dispersion analysis of wave motion in microstructured solids. Ph.D. thesis of Tallinn University of Technology, Natural and Exact Sciences. TUT Press, Tallinn (2011)
193.
Zurück zum Zitat Peets, T., Randrüüt, M., Engelbrecht, J.: On modelling dispersion in microstructured solids. Wave Motion 45(4), 471–480 (2008)CrossRefMATHMathSciNet Peets, T., Randrüüt, M., Engelbrecht, J.: On modelling dispersion in microstructured solids. Wave Motion 45(4), 471–480 (2008)CrossRefMATHMathSciNet
194.
Zurück zum Zitat Peets, T., Kartofelev, D., Tamm, K., Engelbrecht, J.: Waves in microstructured solids and negative group velocity. EPL 103, 16001 (2013)CrossRef Peets, T., Kartofelev, D., Tamm, K., Engelbrecht, J.: Waves in microstructured solids and negative group velocity. EPL 103, 16001 (2013)CrossRef
195.
Zurück zum Zitat Peipman, T., Valdek, U., Engelbrecht, J.: Nonlinear two-dimensional longitudinal and shear waves in solids. Acustica 76(2), 84–94 (1992)MATH Peipman, T., Valdek, U., Engelbrecht, J.: Nonlinear two-dimensional longitudinal and shear waves in solids. Acustica 76(2), 84–94 (1992)MATH
196.
Zurück zum Zitat Pichugin, A., Askes, H., Tyas, A.: Asymptotic equivalence of homogenisation procedures and fine-tuning of continuum theories. J. Sound Vib. 313(3), 858–874 (2008)CrossRef Pichugin, A., Askes, H., Tyas, A.: Asymptotic equivalence of homogenisation procedures and fine-tuning of continuum theories. J. Sound Vib. 313(3), 858–874 (2008)CrossRef
199.
Zurück zum Zitat Porubov, A.V.: Amplification of Nonlinear Strain Waves in Solids. World Scientific, Singapore (2003)MATH Porubov, A.V.: Amplification of Nonlinear Strain Waves in Solids. World Scientific, Singapore (2003)MATH
200.
Zurück zum Zitat Porubov, A., Pastrone, F.: Non-linear bell-shaped and kink-shaped strain waves in microstructured solids. Int. J. Non-Linear Mech. 39(8), 1289–1299 (2004)CrossRefMATH Porubov, A., Pastrone, F.: Non-linear bell-shaped and kink-shaped strain waves in microstructured solids. Int. J. Non-Linear Mech. 39(8), 1289–1299 (2004)CrossRefMATH
201.
Zurück zum Zitat Porubov, A.V.: Localization of Nonlinear Strain Waves. Fizmatlit, Moscow (2009, in Russian) Porubov, A.V.: Localization of Nonlinear Strain Waves. Fizmatlit, Moscow (2009, in Russian)
203.
204.
Zurück zum Zitat Randrüüt, M., Salupere, A., Engelbrecht, J.: On modelling wave motion in microstructured solids. Proc. Estonian Acad. Sci. 58(4), 241–256 (2009)CrossRefMATH Randrüüt, M., Salupere, A., Engelbrecht, J.: On modelling wave motion in microstructured solids. Proc. Estonian Acad. Sci. 58(4), 241–256 (2009)CrossRefMATH
210.
Zurück zum Zitat Russell, J.S.: Report on Waves. British Association for the Advancement of Science, London (1845) Russell, J.S.: Report on Waves. British Association for the Advancement of Science, London (1845)
211.
Zurück zum Zitat Salupere, A.: On the application of the pseudospectral method for solving the Korteweg-de Vries equation. Proc. Estonian Acad. Sci. Phys. Math. 44(1), 73–87 (1995)MATHMathSciNet Salupere, A.: On the application of the pseudospectral method for solving the Korteweg-de Vries equation. Proc. Estonian Acad. Sci. Phys. Math. 44(1), 73–87 (1995)MATHMathSciNet
212.
Zurück zum Zitat Salupere, A.: The pseudospectral method and discrete spectral analysis. In: Quak, E., Soomere, T. (eds.) Applied Wave Mathematics, pp. 301–333. Springer, Heidelberg (2009)CrossRef Salupere, A.: The pseudospectral method and discrete spectral analysis. In: Quak, E., Soomere, T. (eds.) Applied Wave Mathematics, pp. 301–333. Springer, Heidelberg (2009)CrossRef
213.
Zurück zum Zitat Salupere, A., Maugin, G.A., Engelbrecht, J.: Korteweg-de Vries soliton detection from a harmonic input. Phys. Lett. A 192, 5–8 (1994)CrossRefMATHMathSciNet Salupere, A., Maugin, G.A., Engelbrecht, J.: Korteweg-de Vries soliton detection from a harmonic input. Phys. Lett. A 192, 5–8 (1994)CrossRefMATHMathSciNet
214.
Zurück zum Zitat Salupere, A., Maugin, G., Engelbrecht, J., Kalda, J.: On the KdV soliton formation and discrete spectral analysis. Wave Motion 23(1), 49–66 (1996)CrossRefMATHMathSciNet Salupere, A., Maugin, G., Engelbrecht, J., Kalda, J.: On the KdV soliton formation and discrete spectral analysis. Wave Motion 23(1), 49–66 (1996)CrossRefMATHMathSciNet
215.
Zurück zum Zitat Salupere, A., Engelbrecht, J., Maugin, G.: Solitonic structures in KdV-based higher-order systems. Wave Motion 34(1), 51–61 (2001)CrossRefMATHMathSciNet Salupere, A., Engelbrecht, J., Maugin, G.: Solitonic structures in KdV-based higher-order systems. Wave Motion 34(1), 51–61 (2001)CrossRefMATHMathSciNet
216.
Zurück zum Zitat Salupere, A., Peterson, P., Engelbrecht, J.: Long-time behaviour of soliton ensembles. Part I — emergence of ensembles. Chaos Solitons Fractals 14(9), 1413–1424 (2002) Salupere, A., Peterson, P., Engelbrecht, J.: Long-time behaviour of soliton ensembles. Part I — emergence of ensembles. Chaos Solitons Fractals 14(9), 1413–1424 (2002)
217.
Zurück zum Zitat Salupere, A., Peterson, P., Engelbrecht, J.: Long-time behaviour of soliton ensembles. Part II — periodical patterns of trajectories. Chaos Solitons Fractals 15(1), 29–40 (2003) Salupere, A., Peterson, P., Engelbrecht, J.: Long-time behaviour of soliton ensembles. Part II — periodical patterns of trajectories. Chaos Solitons Fractals 15(1), 29–40 (2003)
218.
Zurück zum Zitat Salupere, A., Engelbrecht, J., Ilison, O., Ilison, L.: On solitons in microstructured solids and granular materials. Math. Comput. Simul. 69(5), 502–513 (2005)CrossRefMATHMathSciNet Salupere, A., Engelbrecht, J., Ilison, O., Ilison, L.: On solitons in microstructured solids and granular materials. Math. Comput. Simul. 69(5), 502–513 (2005)CrossRefMATHMathSciNet
219.
Zurück zum Zitat Salupere, A., Tamm, K., Engelbrecht, J.: Numerical simulation of interaction of solitary deformation waves in microstructured solids. Int. J. Non-Linear Mech. 43(3), 201–208 (2008)CrossRefMATH Salupere, A., Tamm, K., Engelbrecht, J.: Numerical simulation of interaction of solitary deformation waves in microstructured solids. Int. J. Non-Linear Mech. 43(3), 201–208 (2008)CrossRefMATH
220.
222.
Zurück zum Zitat Schroeder, M., Fractals, C.: Power Laws. Freeman, New York (1991)MATH Schroeder, M., Fractals, C.: Power Laws. Freeman, New York (1991)MATH
224.
Zurück zum Zitat Scott, A. (ed.): Encyclopedia of Nonlinear Science. Taylor and Francis, New York (2005)MATH Scott, A. (ed.): Encyclopedia of Nonlinear Science. Taylor and Francis, New York (2005)MATH
225.
Zurück zum Zitat Scott, N.: Thermoelasticity and generalized thermoelasticity viewed as wave hierarchies. IMA J. Appl. Math. 72, 1–14 (2007)MathSciNet Scott, N.: Thermoelasticity and generalized thermoelasticity viewed as wave hierarchies. IMA J. Appl. Math. 72, 1–14 (2007)MathSciNet
230.
Zurück zum Zitat Stewart, I.: 17 Equations that Changed the World. Profile Books, London (2013) Stewart, I.: 17 Equations that Changed the World. Profile Books, London (2013)
244.
245.
Zurück zum Zitat Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)MATH Whitham, G.B.: Linear and Nonlinear Waves. Wiley, New York (1974)MATH
247.
Zurück zum Zitat Yoshimura, K., Watanabe, S.: Chaotic behaviour of nonlinear evolution equation with fifth order dispersion. J. Phys. Soc. Jpn. 51, 3028–3035 (1982)CrossRefMathSciNet Yoshimura, K., Watanabe, S.: Chaotic behaviour of nonlinear evolution equation with fifth order dispersion. J. Phys. Soc. Jpn. 51, 3028–3035 (1982)CrossRefMathSciNet
248.
Zurück zum Zitat Zabusky, N.J., Kruskal, M.D.: Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15(6), 240–243 (1965)CrossRefMATH Zabusky, N.J., Kruskal, M.D.: Interaction of “solitons” in a collisionless plasma and the recurrence of initial states. Phys. Rev. Lett. 15(6), 240–243 (1965)CrossRefMATH
Metadaten
Titel
What physical effects are involved?
verfasst von
jüri Engelbrecht
Copyright-Jahr
2015
DOI
https://doi.org/10.1007/978-3-319-14791-8_6