Skip to main content
Erschienen in: Experiments in Fluids 6/2012

01.06.2012 | Research Article

Wind tunnel measurements of the preferential concentration of inertial droplets in homogeneous isotropic turbulence

verfasst von: Colin P. Bateson, Alberto Aliseda

Erschienen in: Experiments in Fluids | Ausgabe 6/2012

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We describe an experimental setup aimed at studying turbulent-induced droplet collisions in a laboratory setting. Our goal is to reproduce conditions relevant to warm-rain formation in clouds. In these conditions, the trajectories of small inertial droplets are strongly influenced by the background air turbulence, and collisions can potentially explain the droplet growth rates and spectrum broadening observed in this type of clouds. Warm-rain formation is currently under strong scrutiny because it is an important source of uncertainty in atmospheric models. A grid at the entrance of a horizontal wind tunnel produces homogeneous isotropic turbulence at a Re λ in the range of 400–500. Water droplets are injected from the nodes of the turbulence-inducing grid at a volume fraction (ϕ) of 2.7 × 10−5 and with sizes of 10–200 μm. A complex manifold-injection system was developed to obtain uniform water droplet seeding, in terms of both water content and size distribution. We characterize the resulting droplet-laden turbulent flow, and the statistics of droplet pairs are measured and analyzed. We found that the radial distribution function (RDF), a measure of preferential concentration of droplets that plays a key role in collision kernel models, has a large peak at distances below the Kolmogorov microscale of the turbulence. At very long separations, comparable with the integral length scale of the turbulence, these RDFs show a slow decay to the average probability given by the mean droplet number density. Consistent with this result, conditional analysis shows an increased local concentration of droplets within the inertial length scale (≈ 10–100 Kolmogorov lengths). These results are in good agreement with previous experiments that found clustering of inertial droplets with St ≈ 1 at scales on the order of 10η. Ultimately, our results support the hypothesis that turbulence-induced preferential concentration and enhanced settling can lead to significant increases in the collision probability for inertial droplets in the range 10–50 μm.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Albrecht H (2003) Laser Doppler and phase Doppler measurement techniques. Experimental fluid mechanics. Springer, Berlin Albrecht H (2003) Laser Doppler and phase Doppler measurement techniques. Experimental fluid mechanics. Springer, Berlin
Zurück zum Zitat Aliseda A, Hainaux F, Cartellier A, Lasheras J (2002) Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J Fluid Mech 468:77–105MATHCrossRef Aliseda A, Hainaux F, Cartellier A, Lasheras J (2002) Effect of preferential concentration on the settling velocity of heavy particles in homogeneous isotropic turbulence. J Fluid Mech 468:77–105MATHCrossRef
Zurück zum Zitat Arenberg D (1939) Turbulence as the major factor in the growth of cloud drops. Bull Am Meteorol Soc 20:444–448 Arenberg D (1939) Turbulence as the major factor in the growth of cloud drops. Bull Am Meteorol Soc 20:444–448
Zurück zum Zitat Ayala O, Rosa B, Wang L, Grabowski WW (2008) Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation. New J Phys 10:075015CrossRef Ayala O, Rosa B, Wang L, Grabowski WW (2008) Effects of turbulence on the geometric collision rate of sedimenting droplets. Part 1. Results from direct numerical simulation. New J Phys 10:075015CrossRef
Zurück zum Zitat Bachalo W (1994) Experimental methods in multiphase flows. Int J Multiph Flow 20(Suppl):261–295MATHCrossRef Bachalo W (1994) Experimental methods in multiphase flows. Int J Multiph Flow 20(Suppl):261–295MATHCrossRef
Zurück zum Zitat Bateson CP (2010) The radial distribution function as a quantication of the preferential concentration of cloud droplets in a turbulent flow. Master’s thesis, University of Washington Bateson CP (2010) The radial distribution function as a quantication of the preferential concentration of cloud droplets in a turbulent flow. Master’s thesis, University of Washington
Zurück zum Zitat Corrsin S (1963) Turbulence: experimental methods. In: Flugge S, Truesdall C (eds) Handbuch der Physik, vol VIII, Springer, Berlin, pp 524–590 Corrsin S (1963) Turbulence: experimental methods. In: Flugge S, Truesdall C (eds) Handbuch der Physik, vol VIII, Springer, Berlin, pp 524–590
Zurück zum Zitat de Almeida FC (1976) The collision problem of cloud droplets moving in a turbulent environment. Part I: a method of solution. J Atmos Sci 33:1571–1578CrossRef de Almeida FC (1976) The collision problem of cloud droplets moving in a turbulent environment. Part I: a method of solution. J Atmos Sci 33:1571–1578CrossRef
Zurück zum Zitat de Almeida FC (1979) The collision problem of cloud droplets moving in a turbulent environment. Part II: turbulent collision efficiencies. J Atmos Sci 36:1564–1576CrossRef de Almeida FC (1979) The collision problem of cloud droplets moving in a turbulent environment. Part II: turbulent collision efficiencies. J Atmos Sci 36:1564–1576CrossRef
Zurück zum Zitat de Almeida FC (1979) The effects of small-scale turbulent motions on the growth of a cloud droplet spectrum. J Atmos Sci 36:1557–1563CrossRef de Almeida FC (1979) The effects of small-scale turbulent motions on the growth of a cloud droplet spectrum. J Atmos Sci 36:1557–1563CrossRef
Zurück zum Zitat East T, Marshall J (1954) Turbulence in clouds as a factor in precipitation. Q J R Meteorol Soc 80:26–47CrossRef East T, Marshall J (1954) Turbulence in clouds as a factor in precipitation. Q J R Meteorol Soc 80:26–47CrossRef
Zurück zum Zitat Eaton J, Fessler J (1994) Preferential concentration of particles by turbulence. Int J Multiph Flow 20(Suppl):169–209MATHCrossRef Eaton J, Fessler J (1994) Preferential concentration of particles by turbulence. Int J Multiph Flow 20(Suppl):169–209MATHCrossRef
Zurück zum Zitat Faeth G, Hsiang LP, Wu PK (1995) Structure and breakup properties of sprays. Int J Multiphase Flow 21(Suppl):99–127 Faeth G, Hsiang LP, Wu PK (1995) Structure and breakup properties of sprays. Int J Multiphase Flow 21(Suppl):99–127
Zurück zum Zitat George W, Beuther P, Lumley J (1978) Processing of random signals. In: Hansen BW (ed) Proceedings of the dynamic flow conference on dynamic measurements in unsteady flows, Marseille, France and Baltimore, USA, pp 757–800 George W, Beuther P, Lumley J (1978) Processing of random signals. In: Hansen BW (ed) Proceedings of the dynamic flow conference on dynamic measurements in unsteady flows, Marseille, France and Baltimore, USA, pp 757–800
Zurück zum Zitat Goldstein, R (eds) (1996) Fluid mechanics measurements. 2nd edn. Taylor & Francis, Washington, D.C Goldstein, R (eds) (1996) Fluid mechanics measurements. 2nd edn. Taylor & Francis, Washington, D.C
Zurück zum Zitat Grover S, Pruppacher HR (1985) The effect of vertical turbulent fluctuations in the atmosphere on the collection of aerosol particles by cloud drops. J Atmos Sci 42:2305–2318CrossRef Grover S, Pruppacher HR (1985) The effect of vertical turbulent fluctuations in the atmosphere on the collection of aerosol particles by cloud drops. J Atmos Sci 42:2305–2318CrossRef
Zurück zum Zitat Gad-el Hak M, Corrsin S (1974) Measurements of the nearly isotropic turbulence behind a uniform jet grid. J Fluid Mech 62(part 1):115–143CrossRef Gad-el Hak M, Corrsin S (1974) Measurements of the nearly isotropic turbulence behind a uniform jet grid. J Fluid Mech 62(part 1):115–143CrossRef
Zurück zum Zitat Holtzer G, Collins L (2002) Relationship between the intrinsic radial distribution function for an isotropic field of particles and lower-dimensional measurements. J Fluid Mech 459:93–102MATHCrossRef Holtzer G, Collins L (2002) Relationship between the intrinsic radial distribution function for an isotropic field of particles and lower-dimensional measurements. J Fluid Mech 459:93–102MATHCrossRef
Zurück zum Zitat Jonas P (1996) Turbulence and cloud microphysics. Atmos Res 40:283–306CrossRef Jonas P (1996) Turbulence and cloud microphysics. Atmos Res 40:283–306CrossRef
Zurück zum Zitat King L (1914) On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires with applications to hot-wire anemometry. Phys Fluids 214:373–432 King L (1914) On the convection of heat from small cylinders in a stream of fluid: determination of the convection constants of small platinum wires with applications to hot-wire anemometry. Phys Fluids 214:373–432
Zurück zum Zitat Langmuir I (1948) The production of rain by a chain reaction in cumulus clouds at temperatures above freezing. J Atmos Sci 5(5):175–192 Langmuir I (1948) The production of rain by a chain reaction in cumulus clouds at temperatures above freezing. J Atmos Sci 5(5):175–192
Zurück zum Zitat Lázaro BJ, Lasheras J (1992) Particle dispersion in the developing free shear layer. Part 1. Unforced flow. J Fluid Mech 235:143–178CrossRef Lázaro BJ, Lasheras J (1992) Particle dispersion in the developing free shear layer. Part 1. Unforced flow. J Fluid Mech 235:143–178CrossRef
Zurück zum Zitat Lumley J (1965) Interpretation of time spectra measured in high-intensity shear flows. Phys Fluids 8(6):1056–1062MATHCrossRef Lumley J (1965) Interpretation of time spectra measured in high-intensity shear flows. Phys Fluids 8(6):1056–1062MATHCrossRef
Zurück zum Zitat Maxey M (1987) The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J Fluid Mech 174:441–465MATHCrossRef Maxey M (1987) The gravitational settling of aerosol particles in homogeneous turbulence and random flow fields. J Fluid Mech 174:441–465MATHCrossRef
Zurück zum Zitat Maxey M, Corrsin S (1986) Gravitational settling of aerosol particles in randomly oriented cellular flows. J Atmos Sci 43:1112–1134CrossRef Maxey M, Corrsin S (1986) Gravitational settling of aerosol particles in randomly oriented cellular flows. J Atmos Sci 43:1112–1134CrossRef
Zurück zum Zitat Maxey M, Riley J (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26(4):883–889MATHCrossRef Maxey M, Riley J (1983) Equation of motion for a small rigid sphere in a nonuniform flow. Phys Fluids 26(4):883–889MATHCrossRef
Zurück zum Zitat Pinsky M, Khain A, Shapiro M (1997) Turbulence effects on droplet growth and size distribution in clouds—a review. J Aerosol Sci 28:1177–1214CrossRef Pinsky M, Khain A, Shapiro M (1997) Turbulence effects on droplet growth and size distribution in clouds—a review. J Aerosol Sci 28:1177–1214CrossRef
Zurück zum Zitat Pinsky M, Khain A, Shapiro M (1999) Collisions of small drops in a turbulent flow. Part I: collision efficiency. problem formulation and preliminary results. J Atmos Sci 56(15):2585–2600CrossRef Pinsky M, Khain A, Shapiro M (1999) Collisions of small drops in a turbulent flow. Part I: collision efficiency. problem formulation and preliminary results. J Atmos Sci 56(15):2585–2600CrossRef
Zurück zum Zitat Pinsky M, Khain A, Shapiro M (2000) Stochastic effects of cloud droplet hydrodynamic interaction in a turbulent flow. Atmos Res 53:131–169CrossRef Pinsky M, Khain A, Shapiro M (2000) Stochastic effects of cloud droplet hydrodynamic interaction in a turbulent flow. Atmos Res 53:131–169CrossRef
Zurück zum Zitat Pinsky M, Khain A, Grits B (2006) Collisions of small drops in a turbulent flow. Part III: relative droplet fluxes and swept volumes. J Atmos Sci 63(8):2123–2139CrossRef Pinsky M, Khain A, Grits B (2006) Collisions of small drops in a turbulent flow. Part III: relative droplet fluxes and swept volumes. J Atmos Sci 63(8):2123–2139CrossRef
Zurück zum Zitat Pope S (2006) Turbulent flows. 2nd edn. Cambridge University Press, Cambridge Pope S (2006) Turbulent flows. 2nd edn. Cambridge University Press, Cambridge
Zurück zum Zitat Reade WC, Collins LR (2000) Effect of preferential concentration on turbulent collision rates. Phys Fluids 12(10):2530–2540CrossRef Reade WC, Collins LR (2000) Effect of preferential concentration on turbulent collision rates. Phys Fluids 12(10):2530–2540CrossRef
Zurück zum Zitat Reuter GW, de Villiers R, Yavin Y (1988) The collection kernel for two falling cloud drops subjected to random perturbations in a turbulent air flow: a stochastic model. J Atmospher Sci 45:765–773CrossRef Reuter GW, de Villiers R, Yavin Y (1988) The collection kernel for two falling cloud drops subjected to random perturbations in a turbulent air flow: a stochastic model. J Atmospher Sci 45:765–773CrossRef
Zurück zum Zitat Reuter GW, Wright CJ, Eyre D (1989) Effects of turbulence on the growth of a cloud drop spectrum. J Atmos Sci 46:1407–1410CrossRef Reuter GW, Wright CJ, Eyre D (1989) Effects of turbulence on the growth of a cloud drop spectrum. J Atmos Sci 46:1407–1410CrossRef
Zurück zum Zitat Rogers RR, Yau MK (1989) A short course in cloud physics. 3rd edn. Butterworth-Heinemann, Oxford Rogers RR, Yau MK (1989) A short course in cloud physics. 3rd edn. Butterworth-Heinemann, Oxford
Zurück zum Zitat Ruger M, Hohmann S, Sommerfeld M, Kohnen G (2000) Euler/Lagrange calculations of turbulent sprays: the effect of droplet collisions and coalescence. At Spray 10:47–81 Ruger M, Hohmann S, Sommerfeld M, Kohnen G (2000) Euler/Lagrange calculations of turbulent sprays: the effect of droplet collisions and coalescence. At Spray 10:47–81
Zurück zum Zitat Saffman P, Turner J (1956) On the collision of drops in turbulent clouds. J Fluid Mech 1:16–30MATHCrossRef Saffman P, Turner J (1956) On the collision of drops in turbulent clouds. J Fluid Mech 1:16–30MATHCrossRef
Zurück zum Zitat Seifert A, Beheng K (2006) A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: model description. Meteorol Atmos Phys 92(1-1):45–66CrossRef Seifert A, Beheng K (2006) A two-moment cloud microphysics parameterization for mixed-phase clouds. Part 1: model description. Meteorol Atmos Phys 92(1-1):45–66CrossRef
Zurück zum Zitat Shaw R (2003) Particle-turbulence interactions in atmospheric clouds. Ann Rev Fluid Mech 35:183–227CrossRef Shaw R (2003) Particle-turbulence interactions in atmospheric clouds. Ann Rev Fluid Mech 35:183–227CrossRef
Zurück zum Zitat Shaw R, Reade WC, Collins LR, Verlinde J (1998) Preferential concentration of cloud droplets by turbulence: effects on the early evolution of cumulus cloud droplet spectra. J Atmos Sci 55:1965–1976CrossRef Shaw R, Reade WC, Collins LR, Verlinde J (1998) Preferential concentration of cloud droplets by turbulence: effects on the early evolution of cumulus cloud droplet spectra. J Atmos Sci 55:1965–1976CrossRef
Zurück zum Zitat Squires K, Eaton J (1991) Preferential concentration of particles by turbulence. Phys Fluids 3(5):1169–1178CrossRef Squires K, Eaton J (1991) Preferential concentration of particles by turbulence. Phys Fluids 3(5):1169–1178CrossRef
Zurück zum Zitat Sundaram S, Collins L (1997) Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J Fluid Mech 335:75–109MATHCrossRef Sundaram S, Collins L (1997) Collision statistics in an isotropic particle-laden turbulent suspension. Part 1. Direct numerical simulations. J Fluid Mech 335:75–109MATHCrossRef
Zurück zum Zitat Taylor G (1938) The spectrum of turbulence. Proc R Soc Lond A 164(919):476–490CrossRef Taylor G (1938) The spectrum of turbulence. Proc R Soc Lond A 164(919):476–490CrossRef
Zurück zum Zitat Truesdell G, Elghobashi S (1994) On the two way interaction between homogeneous turbulence and dispersed solid particles. II. Particle dispersion. Phys Fluids 6(3):1405–1407CrossRef Truesdell G, Elghobashi S (1994) On the two way interaction between homogeneous turbulence and dispersed solid particles. II. Particle dispersion. Phys Fluids 6(3):1405–1407CrossRef
Zurück zum Zitat Vaillancourt PA, Yau MK (2000) Review of particle-turbulence interactions and consequences for cloud physics. Bull Am Meteorol Soc 81:285–298CrossRef Vaillancourt PA, Yau MK (2000) Review of particle-turbulence interactions and consequences for cloud physics. Bull Am Meteorol Soc 81:285–298CrossRef
Zurück zum Zitat Vohl O, Mitra S, Wurzler S, Pruppacher H (1999) A wind tunnel study of the effects of turbulence on the growth of cloud drops by collision and coalescence. J Atmos Sci 56(24):4088–4099CrossRef Vohl O, Mitra S, Wurzler S, Pruppacher H (1999) A wind tunnel study of the effects of turbulence on the growth of cloud drops by collision and coalescence. J Atmos Sci 56(24):4088–4099CrossRef
Zurück zum Zitat Wang B, Xu D, Chu K, Yu A (2006) Numerical study of gas-solid flow in a cyclone separator. Appl Math Model 30(11):1326–1342CrossRef Wang B, Xu D, Chu K, Yu A (2006) Numerical study of gas-solid flow in a cyclone separator. Appl Math Model 30(11):1326–1342CrossRef
Zurück zum Zitat Wang L, Maxey M (1993) Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J Fluid Mech 256:27–68CrossRef Wang L, Maxey M (1993) Settling velocity and concentration distribution of heavy particles in homogeneous isotropic turbulence. J Fluid Mech 256:27–68CrossRef
Zurück zum Zitat Wang L, Wexler A, Zhou Y (2000) Statistical mechanical description and modelling of turbulent collision of inertial particles. J Fluid Mech 415:117–153MathSciNetMATHCrossRef Wang L, Wexler A, Zhou Y (2000) Statistical mechanical description and modelling of turbulent collision of inertial particles. J Fluid Mech 415:117–153MathSciNetMATHCrossRef
Zurück zum Zitat Wang L, Ayala O, Kasprzak S, Grabowski W (2005) Theoretical formulation of collision rate and collision efficiency of hydrodynamically interacting cloud droplets in turbulent atmosphere. J Atmos Sci 62(7):2433–2450CrossRef Wang L, Ayala O, Kasprzak S, Grabowski W (2005) Theoretical formulation of collision rate and collision efficiency of hydrodynamically interacting cloud droplets in turbulent atmosphere. J Atmos Sci 62(7):2433–2450CrossRef
Zurück zum Zitat Wang L, Xue Y, Ayala O, Grabowski W (2006) Effects of stochastic coalescence and air turbulence on the size distribution of cloud droplets. Atmos Res 82:416–432CrossRef Wang L, Xue Y, Ayala O, Grabowski W (2006) Effects of stochastic coalescence and air turbulence on the size distribution of cloud droplets. Atmos Res 82:416–432CrossRef
Zurück zum Zitat Wang L, Ayala O, Rosa B, Grabowski WW (2008) Turbulent collision efficiency of heavy particles relevant to cloud droplets. New J Phys 10:075013CrossRef Wang L, Ayala O, Rosa B, Grabowski WW (2008) Turbulent collision efficiency of heavy particles relevant to cloud droplets. New J Phys 10:075013CrossRef
Zurück zum Zitat Wells M, Stock D (1983) The effect of crossing trajectories on the dispersion of particles in a turbulent flow. J Fluid Mech 136:31–62CrossRef Wells M, Stock D (1983) The effect of crossing trajectories on the dispersion of particles in a turbulent flow. J Fluid Mech 136:31–62CrossRef
Zurück zum Zitat Xue Y, Wang L, Grabowski W (2008) Growth of cloud droplets by turbulent collision-coalescence. J Atmos Sci 65(2):331–356CrossRef Xue Y, Wang L, Grabowski W (2008) Growth of cloud droplets by turbulent collision-coalescence. J Atmos Sci 65(2):331–356CrossRef
Zurück zum Zitat Yaxin, Su (2006) The turbulent characteristics of the gassolid suspension in a square cyclone separator. Chem Eng Sci 61(5):1395–1400 Yaxin, Su (2006) The turbulent characteristics of the gassolid suspension in a square cyclone separator. Chem Eng Sci 61(5):1395–1400
Zurück zum Zitat Zaichik L, Alipchenkov V, Avetissian A (2006) Modelling turbulent collision rates of inertial particles. Int J Heat Fl Flow 27(5):937–944CrossRef Zaichik L, Alipchenkov V, Avetissian A (2006) Modelling turbulent collision rates of inertial particles. Int J Heat Fl Flow 27(5):937–944CrossRef
Zurück zum Zitat Zhou Y, Wexler A, Wang L (2001) Modelling turbulent collision of bidisperse inertial particles. J Fluid Mech 433:77–104MATH Zhou Y, Wexler A, Wang L (2001) Modelling turbulent collision of bidisperse inertial particles. J Fluid Mech 433:77–104MATH
Metadaten
Titel
Wind tunnel measurements of the preferential concentration of inertial droplets in homogeneous isotropic turbulence
verfasst von
Colin P. Bateson
Alberto Aliseda
Publikationsdatum
01.06.2012
Verlag
Springer-Verlag
Erschienen in
Experiments in Fluids / Ausgabe 6/2012
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-011-1252-6

Weitere Artikel der Ausgabe 6/2012

Experiments in Fluids 6/2012 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.