Skip to main content
Erschienen in: Telecommunication Systems 3/2021

09.03.2021

Wireless energy transfer policies for cognitive radio based MAC in energy-constrained IoT networks

verfasst von: Show-Shiow Tzeng, Ying-Jen Lin

Erschienen in: Telecommunication Systems | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Efficient energy transfer is crucial for a green base station with limited energy to replenish the energy of stand-alone devices in the Internet of Things (IoT). Cognitive radio (CR) is critical to satisfying the spectrum requirement for IoT devices. This paper proposes two wireless charging policies, namely, charging in residual multi-frame time and charging one energy unit at a time, for the random access multiple access control on CR-based green-energy networks. The novelty of the policies is to send wireless energy at appropriate timing and duration. Event-driven simulations are conducted to study the performances of the policies. Simulation results show that the two policies significantly yield high energy efficiency, and maintain throughput and quality-of services. Besides, the policy of charging one energy unit at a time outperforms the policy of charging in residual multi-frame time.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Chettri, L., & Bera, R. (2020). A comprehensive survey on Internet of Things (IoT) towards 5G wireless systems. IEEE Internet of Things Journal, 7(1), 16–32.CrossRef Chettri, L., & Bera, R. (2020). A comprehensive survey on Internet of Things (IoT) towards 5G wireless systems. IEEE Internet of Things Journal, 7(1), 16–32.CrossRef
2.
Zurück zum Zitat Sharma, S. K., & Wang, X. (2020). Towards massive machine type communications in ultra-dense cellular IoT networks: Current issues and machine learning-assisted solutions. IEEE Communications Surveys & Tutorials, 22(1), 426–471.CrossRef Sharma, S. K., & Wang, X. (2020). Towards massive machine type communications in ultra-dense cellular IoT networks: Current issues and machine learning-assisted solutions. IEEE Communications Surveys & Tutorials, 22(1), 426–471.CrossRef
3.
Zurück zum Zitat Stoyanova, M., Nikoloudakis, Y., Panagiotakis, S., Pallis, E., & Markakis, E. K. (2020). A survey on the Internet of Things (IoT) forensics: Challenges, approaches, and open issues. IEEE Communications Surveys & Tutorials, 22(2), 1191–1221.CrossRef Stoyanova, M., Nikoloudakis, Y., Panagiotakis, S., Pallis, E., & Markakis, E. K. (2020). A survey on the Internet of Things (IoT) forensics: Challenges, approaches, and open issues. IEEE Communications Surveys & Tutorials, 22(2), 1191–1221.CrossRef
4.
Zurück zum Zitat Xia, N., Chen, H.-H., & Yang, C.-S. (2018). Radio resource management in machine-to-machine communications—A survey. IEEE Communications Surveys & Tutorials, 20(1), 791–828.CrossRef Xia, N., Chen, H.-H., & Yang, C.-S. (2018). Radio resource management in machine-to-machine communications—A survey. IEEE Communications Surveys & Tutorials, 20(1), 791–828.CrossRef
5.
Zurück zum Zitat Ali, A., Hamouda, W., & Uysal, M. (2015). Next generation M2M cellular networks: Challenges and practical considerations. IEEE Communications Magazine, 53(9), 18–24.CrossRef Ali, A., Hamouda, W., & Uysal, M. (2015). Next generation M2M cellular networks: Challenges and practical considerations. IEEE Communications Magazine, 53(9), 18–24.CrossRef
6.
Zurück zum Zitat Awin, F. A., Alginahi, Y. M., Abdel-Raheem, E., & Tepe, K. (2019). Technical issues on cognitive radio-based Internet of Things systems: A survey. IEEE Access, 7, 97887–97908.CrossRef Awin, F. A., Alginahi, Y. M., Abdel-Raheem, E., & Tepe, K. (2019). Technical issues on cognitive radio-based Internet of Things systems: A survey. IEEE Access, 7, 97887–97908.CrossRef
7.
Zurück zum Zitat Ahmad, W. S. H. M. W., et al. (2020). 5G technology: Towards dynamic spectrum sharing using cognitive radio networks. IEEE Access, 8, 14460–14488.CrossRef Ahmad, W. S. H. M. W., et al. (2020). 5G technology: Towards dynamic spectrum sharing using cognitive radio networks. IEEE Access, 8, 14460–14488.CrossRef
8.
Zurück zum Zitat Rawat, P., Singh, K. D., & Bonnin, J. M. (2016). Cognitive radio for M2M and Internet of Things: A survey. Computer Communications, 94(15), 1–29.CrossRef Rawat, P., Singh, K. D., & Bonnin, J. M. (2016). Cognitive radio for M2M and Internet of Things: A survey. Computer Communications, 94(15), 1–29.CrossRef
9.
Zurück zum Zitat Khan, A. A., Rehmani, M. H., & Rachedi, A. (2017). Cognitive radio based Internet of Things: Applications, architectures, spectrum related functionalities, and future research directions. IEEE Wireless Communications, 24(3), 17–25.CrossRef Khan, A. A., Rehmani, M. H., & Rachedi, A. (2017). Cognitive radio based Internet of Things: Applications, architectures, spectrum related functionalities, and future research directions. IEEE Wireless Communications, 24(3), 17–25.CrossRef
10.
Zurück zum Zitat Aijaz, A., & Aghvami, A.-H. (2015). PRMA-based cognitive machine-to-machine communications in smart grid networks. IEEE Transactions on Vehicular Technology, 64(8), 3608–3623.CrossRef Aijaz, A., & Aghvami, A.-H. (2015). PRMA-based cognitive machine-to-machine communications in smart grid networks. IEEE Transactions on Vehicular Technology, 64(8), 3608–3623.CrossRef
11.
Zurück zum Zitat Aijaz, A., & Aghvami, A.-H. (2015). Cognitive machine-to-machine communications for Internet-of-Things: A protocol stack perspective. IEEE Internet of Things Journal, 2(2), 103–112.CrossRef Aijaz, A., & Aghvami, A.-H. (2015). Cognitive machine-to-machine communications for Internet-of-Things: A protocol stack perspective. IEEE Internet of Things Journal, 2(2), 103–112.CrossRef
12.
Zurück zum Zitat Singh, R. P., Sangwan, A., & Godara, K. (2019). Modified-PRMA MAC protocol for cognitive radio networks. Wireless Personal Communications, 107, 869–885.CrossRef Singh, R. P., Sangwan, A., & Godara, K. (2019). Modified-PRMA MAC protocol for cognitive radio networks. Wireless Personal Communications, 107, 869–885.CrossRef
13.
Zurück zum Zitat Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2016). Wireless charging technologies: Fundamentals, standards, and network applications. IEEE Communications Surveys and Tutorials, 18(2), 1413–1452.CrossRef Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, Z. (2016). Wireless charging technologies: Fundamentals, standards, and network applications. IEEE Communications Surveys and Tutorials, 18(2), 1413–1452.CrossRef
14.
Zurück zum Zitat Ku, M.-L., Li, W., Chen, Y., & Liu, K. J. R. (2016). Advances in energy harvesting communications: Past, present, and future challenges. IEEE Communications Surveys and Tutorials, 18(2), 1384–1412.CrossRef Ku, M.-L., Li, W., Chen, Y., & Liu, K. J. R. (2016). Advances in energy harvesting communications: Past, present, and future challenges. IEEE Communications Surveys and Tutorials, 18(2), 1384–1412.CrossRef
15.
Zurück zum Zitat Soyata, T., Copeland, L., & Heinzelman, W. (2016). RF energy harvesting for embedded systems: A survey of tradeoffs and methodology. IEEE Circuits and Systems Magazine, 16(1), 22–57.CrossRef Soyata, T., Copeland, L., & Heinzelman, W. (2016). RF energy harvesting for embedded systems: A survey of tradeoffs and methodology. IEEE Circuits and Systems Magazine, 16(1), 22–57.CrossRef
16.
Zurück zum Zitat Ren, J., et al. (2018). RF energy harvesting and transfer in cognitive radio sensor networks: Opportunities and challenges. IEEE Communications Magazine, 56(1), 104–110.CrossRef Ren, J., et al. (2018). RF energy harvesting and transfer in cognitive radio sensor networks: Opportunities and challenges. IEEE Communications Magazine, 56(1), 104–110.CrossRef
17.
Zurück zum Zitat Mohjazi, L., Dianati, M., Karagiannidis, G. K., Muhaidat, S., & Al-Qutayri, M. (2015). RF-powered cognitive radio networks: Technical challenges and limitations. IEEE Communications Magazine, 53(4), 94–100.CrossRef Mohjazi, L., Dianati, M., Karagiannidis, G. K., Muhaidat, S., & Al-Qutayri, M. (2015). RF-powered cognitive radio networks: Technical challenges and limitations. IEEE Communications Magazine, 53(4), 94–100.CrossRef
18.
Zurück zum Zitat Liu, X., & Ansari, N. (2019). Toward green IoT: Energy solutions and key challenges. IEEE Communications Magazine, 57(3), 104–110.CrossRef Liu, X., & Ansari, N. (2019). Toward green IoT: Energy solutions and key challenges. IEEE Communications Magazine, 57(3), 104–110.CrossRef
19.
Zurück zum Zitat Liu, X., & Ansari, N. (2019). Profit-driven user association and smart grid energy transfer in green cellular networks. IEEE Transactions on Vehicular Technology, 68(10), 10111–10120.CrossRef Liu, X., & Ansari, N. (2019). Profit-driven user association and smart grid energy transfer in green cellular networks. IEEE Transactions on Vehicular Technology, 68(10), 10111–10120.CrossRef
20.
Zurück zum Zitat Liu, B., Wang, J., Ma, S., Zhou, F., Ma, Y., & Lu, G. (2019). Energy efficient cooperation in mobile edge computing-enabled cognitive radio networks. IEEE Access, 7, 45382–45394.CrossRef Liu, B., Wang, J., Ma, S., Zhou, F., Ma, Y., & Lu, G. (2019). Energy efficient cooperation in mobile edge computing-enabled cognitive radio networks. IEEE Access, 7, 45382–45394.CrossRef
21.
Zurück zum Zitat Liu, B., Li, W., Ma, Y., Wang, J., & Lu, G. (2019). Wireless powered cognitive-based mobile edge computing with imperfect spectrum sensing. IEEE Access, 7, 80431–80442.CrossRef Liu, B., Li, W., Ma, Y., Wang, J., & Lu, G. (2019). Wireless powered cognitive-based mobile edge computing with imperfect spectrum sensing. IEEE Access, 7, 80431–80442.CrossRef
22.
Zurück zum Zitat Zhai, C., Li, Y., Li, C., & Liu, J. (2020). Cognitive relaying with wireless energy harvesting and accumulation. IEEE Systems Journal (Early Access), 1–12. Zhai, C., Li, Y., Li, C., & Liu, J. (2020). Cognitive relaying with wireless energy harvesting and accumulation. IEEE Systems Journal (Early Access), 1–12.
23.
Zurück zum Zitat Tayel, A. F., Rabia, S. I., El-Malek, A. H. A., & Abdelrazek, A. M. (2020). An optimal policy for hybrid channel access in cognitive radio networks with energy harvesting. IEEE Transactions on Vehicular Technology, 69(10), 11253–11265.CrossRef Tayel, A. F., Rabia, S. I., El-Malek, A. H. A., & Abdelrazek, A. M. (2020). An optimal policy for hybrid channel access in cognitive radio networks with energy harvesting. IEEE Transactions on Vehicular Technology, 69(10), 11253–11265.CrossRef
24.
Zurück zum Zitat Xu, D., & Li, Q. (2019). Resource allocation for secure communications in cooperative cognitive wireless powered communication networks. IEEE Systems Journal, 13(3), 2431–2442.CrossRef Xu, D., & Li, Q. (2019). Resource allocation for secure communications in cooperative cognitive wireless powered communication networks. IEEE Systems Journal, 13(3), 2431–2442.CrossRef
25.
Zurück zum Zitat Ding, H., et al. (2017). Cognitive capacity harvesting networks: Architectural evolution towards future cognitive radio networks. IEEE Communications Surveys and Tutorials, 19(3), 1902–1923.CrossRef Ding, H., et al. (2017). Cognitive capacity harvesting networks: Architectural evolution towards future cognitive radio networks. IEEE Communications Surveys and Tutorials, 19(3), 1902–1923.CrossRef
26.
Zurück zum Zitat Pejoski, S., & Hadzi-Velkov, Z. (2020). Slotted ALOHA wireless networks with RF energy harvesting in Nakagami-m fading. Ad-Hoc Networks, 107, 1–10.CrossRef Pejoski, S., & Hadzi-Velkov, Z. (2020). Slotted ALOHA wireless networks with RF energy harvesting in Nakagami-m fading. Ad-Hoc Networks, 107, 1–10.CrossRef
27.
Zurück zum Zitat Iqbal, M. S., Sadi, Y., & Coleri, S. (2020). Throughput maximization for full duplex wireless powered communication networks. In IEEE international conference on communications (ICC), Dublin, Ireland (pp. 7–11). Iqbal, M. S., Sadi, Y., & Coleri, S. (2020). Throughput maximization for full duplex wireless powered communication networks. In IEEE international conference on communications (ICC), Dublin, Ireland (pp. 7–11).
28.
Zurück zum Zitat Perera, T. D. P., Jayakody, D. N. K., Sharma, S. K., Chatzinotas, S., & Li, J. (2018). Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges. IEEE Communications Surveys & Tutorials, 20(1), 264–302.CrossRef Perera, T. D. P., Jayakody, D. N. K., Sharma, S. K., Chatzinotas, S., & Li, J. (2018). Simultaneous wireless information and power transfer (SWIPT): Recent advances and future challenges. IEEE Communications Surveys & Tutorials, 20(1), 264–302.CrossRef
29.
Zurück zum Zitat Varshney, L. (2008). Transporting information and energy simultaneously. In Proceedings of the IEEE international symposium on information theory (pp. 1612–1616). Varshney, L. (2008). Transporting information and energy simultaneously. In Proceedings of the IEEE international symposium on information theory (pp. 1612–1616).
30.
Zurück zum Zitat Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61, 4754–4767.CrossRef Zhou, X., Zhang, R., & Ho, C. K. (2013). Wireless information and power transfer: Architecture design and rate-energy tradeoff. IEEE Transactions on Communications, 61, 4754–4767.CrossRef
31.
Zurück zum Zitat Boshkovska, E., Ng, D., Zlatanov, N., & Schober, R. (2015). Practical non-linear energy harvesting model and resource allocation for SWIPT systems. IEEE Communications Letters, 19, 2082–2085.CrossRef Boshkovska, E., Ng, D., Zlatanov, N., & Schober, R. (2015). Practical non-linear energy harvesting model and resource allocation for SWIPT systems. IEEE Communications Letters, 19, 2082–2085.CrossRef
32.
Zurück zum Zitat Xu, J., Liu, L., & Zhang, R. (2014). Multiuser MISO beamforming for simultaneous wireless information and power transfer. IEEE Transactions on Signal Processing, 62, 4798–4810.CrossRef Xu, J., Liu, L., & Zhang, R. (2014). Multiuser MISO beamforming for simultaneous wireless information and power transfer. IEEE Transactions on Signal Processing, 62, 4798–4810.CrossRef
33.
Zurück zum Zitat Zhang, Z., Long, K., Vasilakos, A. V., & Hanzo, L. (2016). Full-duplex wireless communications: Challenges, solutions, and future research directions. Proceedings of IEEE, 104(7), 1369–1409.CrossRef Zhang, Z., Long, K., Vasilakos, A. V., & Hanzo, L. (2016). Full-duplex wireless communications: Challenges, solutions, and future research directions. Proceedings of IEEE, 104(7), 1369–1409.CrossRef
34.
Zurück zum Zitat Sharma, S. K., et al. (2018). Dynamic spectrum sharing in 5G wireless networks with full-duplex technology: Recent advances and research challenges. IEEE Communications Surveys and Tutorials, 20(1), 674–707.CrossRef Sharma, S. K., et al. (2018). Dynamic spectrum sharing in 5G wireless networks with full-duplex technology: Recent advances and research challenges. IEEE Communications Surveys and Tutorials, 20(1), 674–707.CrossRef
35.
Zurück zum Zitat Amjad, M., Akhtar, F., Rehmani, M. H., Reisslein, M., & Umer, T. (2017). Full-duplex communication in cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 19(4), 2158–2191.CrossRef Amjad, M., Akhtar, F., Rehmani, M. H., Reisslein, M., & Umer, T. (2017). Full-duplex communication in cognitive radio networks: A survey. IEEE Communications Surveys and Tutorials, 19(4), 2158–2191.CrossRef
36.
Zurück zum Zitat Kolodziej, K. E., Perry, B. T., & Herd, J. S. (2019). In-band full-duplex technology: Techniques and systems survey. IEEE Transactions on Microwave Theory and Techniques, 67(7), 3025–3041. Kolodziej, K. E., Perry, B. T., & Herd, J. S. (2019). In-band full-duplex technology: Techniques and systems survey. IEEE Transactions on Microwave Theory and Techniques, 67(7), 3025–3041.
37.
Zurück zum Zitat Lien, S.-Y., Chen, K.-C., & Lin, Y. (2011). Toward ubiquitous massive accesses in 3GPP machine-to-machine communications. IEEE Communications Magazine, 49(4), 66–74.CrossRef Lien, S.-Y., Chen, K.-C., & Lin, Y. (2011). Toward ubiquitous massive accesses in 3GPP machine-to-machine communications. IEEE Communications Magazine, 49(4), 66–74.CrossRef
38.
Zurück zum Zitat Obaidat, M. S., Nicopolitidis, P., & Zarai, F. (2015). Modeling and simulation of computer networks and systems: Methodologies and applications. Burlington: Morgan Kaufmann. Obaidat, M. S., Nicopolitidis, P., & Zarai, F. (2015). Modeling and simulation of computer networks and systems: Methodologies and applications. Burlington: Morgan Kaufmann.
39.
Zurück zum Zitat Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, A. (2014). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys and Tutorials, 17(2), 757–789.CrossRef Lu, X., Wang, P., Niyato, D., Kim, D. I., & Han, A. (2014). Wireless networks with RF energy harvesting: A contemporary survey. IEEE Communications Surveys and Tutorials, 17(2), 757–789.CrossRef
40.
Zurück zum Zitat Chen, X., et al. (2019). Analysis and design of an ultra-low-power Bluetooth low-energy transmitter with ring oscillator-based ADPLL and 4X frequency edge combiner. IEEE Journal of Solid-State Circuits, 54(5), 1339–1350.CrossRef Chen, X., et al. (2019). Analysis and design of an ultra-low-power Bluetooth low-energy transmitter with ring oscillator-based ADPLL and 4X frequency edge combiner. IEEE Journal of Solid-State Circuits, 54(5), 1339–1350.CrossRef
41.
Zurück zum Zitat Ejaz, W., Naeem, M., Basharat, M., Anpalagan, A., & Kandeepan, S. (2016). Efficient wireless power transfer in software-defined wireless sensor networks. IEEE Sensors Journal, 16(20), 7409–7420.CrossRef Ejaz, W., Naeem, M., Basharat, M., Anpalagan, A., & Kandeepan, S. (2016). Efficient wireless power transfer in software-defined wireless sensor networks. IEEE Sensors Journal, 16(20), 7409–7420.CrossRef
42.
Zurück zum Zitat Naderi, M. Y., Nintanavongsa, P., & Chowdhury, K. R. (2014). RF-MAC: A medium access control protocol for re-chargeable sensor networks powered by wireless energy harvesting. IEEE Transactions on Wireless Communications, 13(7), 3926–3937.CrossRef Naderi, M. Y., Nintanavongsa, P., & Chowdhury, K. R. (2014). RF-MAC: A medium access control protocol for re-chargeable sensor networks powered by wireless energy harvesting. IEEE Transactions on Wireless Communications, 13(7), 3926–3937.CrossRef
Metadaten
Titel
Wireless energy transfer policies for cognitive radio based MAC in energy-constrained IoT networks
verfasst von
Show-Shiow Tzeng
Ying-Jen Lin
Publikationsdatum
09.03.2021
Verlag
Springer US
Erschienen in
Telecommunication Systems / Ausgabe 3/2021
Print ISSN: 1018-4864
Elektronische ISSN: 1572-9451
DOI
https://doi.org/10.1007/s11235-021-00771-4

Weitere Artikel der Ausgabe 3/2021

Telecommunication Systems 3/2021 Zur Ausgabe

Neuer Inhalt