Skip to main content

2013 | OriginalPaper | Buchkapitel

Wound Healing: Multi-Scale Modeling

verfasst von : Fred J. Vermolen, Amit Gefen

Erschienen in: Multiscale Computer Modeling in Biomechanics and Biomedical Engineering

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter is meant as an overview of our already published work that we carry out on modeling wound healing on the cellular, colony and tissue scale, though we detail the description of some stochastic principles that appear in our models. The relation between the scales is described in terms of the underlying biological and mathematical concepts. We also present the implications and applicability of the mathematical models studied.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Vermolen, F.J., Gefen, A.: A semi-stochastic cell-based formalism to model the dynamics of migration of cells in colonies. Biomech. Model. Mechanobiol. 11(1–2), 183–195 (2012)CrossRef Vermolen, F.J., Gefen, A.: A semi-stochastic cell-based formalism to model the dynamics of migration of cells in colonies. Biomech. Model. Mechanobiol. 11(1–2), 183–195 (2012)CrossRef
2.
Zurück zum Zitat Byrne, H., Drasdo, D.: Individual-based and continuum models of growthing cell populations: a comparison. J. Math. Biol. 58, 657–687 (2009)MathSciNetCrossRef Byrne, H., Drasdo, D.: Individual-based and continuum models of growthing cell populations: a comparison. J. Math. Biol. 58, 657–687 (2009)MathSciNetCrossRef
3.
Zurück zum Zitat Sherratt, J.A., Murray, J.D.: Mathematical analysis of a basic model for epidermal wound healing. J. Math. Biol. 29, 389–404 (1991) Sherratt, J.A., Murray, J.D.: Mathematical analysis of a basic model for epidermal wound healing. J. Math. Biol. 29, 389–404 (1991)
4.
Zurück zum Zitat Filion, J., Popel, A.P.: A reaction diffusion model of basic fibroblast growth factor interactions with cell surface receptors. Ann. Biomed.Eng. 32(5), 645–663 (2004) Filion, J., Popel, A.P.: A reaction diffusion model of basic fibroblast growth factor interactions with cell surface receptors. Ann. Biomed.Eng. 32(5), 645–663 (2004)
5.
Zurück zum Zitat Maggelakis, S.A.: A mathematical model for tissue replacement during epidermal wound healing. Appl. Math. Modell. 27(3), 189–196 (2003) Maggelakis, S.A.: A mathematical model for tissue replacement during epidermal wound healing. Appl. Math. Modell. 27(3), 189–196 (2003)
6.
Zurück zum Zitat Gaffney, E.A., Pugh, K., Maini, P.K.: Investigating a simple model for cutaneous wound healing angiogenesis. J. Math. Biol. 45(4), 337–374 (2002) Gaffney, E.A., Pugh, K., Maini, P.K.: Investigating a simple model for cutaneous wound healing angiogenesis. J. Math. Biol. 45(4), 337–374 (2002)
7.
Zurück zum Zitat Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications.Springer, New York (2004) Murray, J.D.: Mathematical Biology II: Spatial Models and Biomedical Applications.Springer, New York (2004)
8.
Zurück zum Zitat Maggelakis, S.A.: Modeling the role of angiogenesis in epidermal wound healing. Discr.Cont. Syst. 4, 267–273 (2004) Maggelakis, S.A.: Modeling the role of angiogenesis in epidermal wound healing. Discr.Cont. Syst. 4, 267–273 (2004)
9.
Zurück zum Zitat Adam, J.A.: A simplified model of wound healing (with particular reference to the critical size defect). Math. Comput. Model. 30, 23–32 (1999) Adam, J.A.: A simplified model of wound healing (with particular reference to the critical size defect). Math. Comput. Model. 30, 23–32 (1999)
10.
Zurück zum Zitat Vermolen, F.J., Adam, J.A.: A finite element model for epidermal wound healing. In:Computational Science, ICCS 2007. Springer, Heidelberg, pp. 70–77 Vermolen, F.J., Adam, J.A.: A finite element model for epidermal wound healing. In:Computational Science, ICCS 2007. Springer, Heidelberg, pp. 70–77
11.
Zurück zum Zitat Olsen, L., Sherratt, J.A., Maini, P.K.: A mechanochemical model for adult dermal wound closure and the permanence of the contracted tissue displacement role. J. Theor. Biol. 177, 113–128 (1995) Olsen, L., Sherratt, J.A., Maini, P.K.: A mechanochemical model for adult dermal wound closure and the permanence of the contracted tissue displacement role. J. Theor. Biol. 177, 113–128 (1995)
12.
Zurück zum Zitat Alarcon, T., Byrne, H., Maini, P., Panovska, J.: Mathematical modeling of angiogenesis and vascular adaptation. In: Paton, R., McNamara, L. (eds.) Studies in Multidisciplinary, vol. 3, pp. 369–387 (2006) Alarcon, T., Byrne, H., Maini, P., Panovska, J.: Mathematical modeling of angiogenesis and vascular adaptation. In: Paton, R., McNamara, L. (eds.) Studies in Multidisciplinary, vol. 3, pp. 369–387 (2006)
13.
Zurück zum Zitat Vermolen F.J.: A simplified finite element model for tissue regeneration with angiogenesis. ASCE J. Eng. Mech. 135(5), 450–460 (2009) Vermolen F.J.: A simplified finite element model for tissue regeneration with angiogenesis. ASCE J. Eng. Mech. 135(5), 450–460 (2009)
15.
Zurück zum Zitat Tranquillo, R.T., Murray, J.D.: Continuum model of fibroblast-driven wound contraction inflammation-mediation. J. Theor. Biol. 158(2), 135–172 (1992) Tranquillo, R.T., Murray, J.D.: Continuum model of fibroblast-driven wound contraction inflammation-mediation. J. Theor. Biol. 158(2), 135–172 (1992)
16.
Zurück zum Zitat Pettet, G.J., Byrne, H.M., McElwain, D.L.S., Norbury, J.: A model of wound healing angiogenesis in soft tissue. Math. Biosci. 136, 35–63 (1996) Pettet, G.J., Byrne, H.M., McElwain, D.L.S., Norbury, J.: A model of wound healing angiogenesis in soft tissue. Math. Biosci. 136, 35–63 (1996)
17.
Zurück zum Zitat Vermolen, F.J., Gefen, A.: A phenomenological model for chemico-mechanically induced cell shape changes during migration and cell–cell contacts. Biomech. Model. Mechanobiol. (2012, in press) Vermolen, F.J., Gefen, A.: A phenomenological model for chemico-mechanically induced cell shape changes during migration and cell–cell contacts. Biomech. Model. Mechanobiol. (2012, in press)
18.
19.
Zurück zum Zitat Groh, A., Louis, A.K.: Stochastic modeling of biased cell migration and collagen matrix modification. J. Math. Biol. 61, 617–647 (2010) Groh, A., Louis, A.K.: Stochastic modeling of biased cell migration and collagen matrix modification. J. Math. Biol. 61, 617–647 (2010)
20.
Zurück zum Zitat CJones, G.W., Chapman, S.J.: Modeling growth in biological materials. SIAM Rev. 54(1), 52–118 (2012) CJones, G.W., Chapman, S.J.: Modeling growth in biological materials. SIAM Rev. 54(1), 52–118 (2012)
21.
Zurück zum Zitat Vermolen, F.J., Gefen, A., Dunlop, J.W.C.: In vitro ‘wound’ healing: experimentally based phenomenological modeling. Adv. Eng. Mater. 14(3), B76–B88 (2012) Vermolen, F.J., Gefen, A., Dunlop, J.W.C.: In vitro ‘wound’ healing: experimentally based phenomenological modeling. Adv. Eng. Mater. 14(3), B76–B88 (2012)
22.
Zurück zum Zitat Vermolen, F.J., van Baaren, E., Adam, J.A.: A simplified model for growth factor induced healing of circular wounds. Math. Comput. Model. 44, 887–898 (2006) Vermolen, F.J., van Baaren, E., Adam, J.A.: A simplified model for growth factor induced healing of circular wounds. Math. Comput. Model. 44, 887–898 (2006)
23.
Zurück zum Zitat Vermolen, F.J., Javierre, E.: On the construction of analytic solutions for a diffusion-reaction equation with a discontinuous switch mechanism. J. Comput. Appl. Math. doi:10.1016/j.cam.2009.05.022 (2009) Vermolen, F.J., Javierre, E.: On the construction of analytic solutions for a diffusion-reaction equation with a discontinuous switch mechanism. J. Comput. Appl. Math. doi:10.​1016/​j.​cam.​2009.​05.​022 (2009)
24.
Zurück zum Zitat Steele, J.M.: Stochastic Calculus and Financial Applications. Springer, New York (2001) Steele, J.M.: Stochastic Calculus and Financial Applications. Springer, New York (2001)
25.
Zurück zum Zitat Kim, Y.-Ch.: Diffusivity of bacteria. Korean J. Chem. Eng. 13(3), 282–287 (1996) Kim, Y.-Ch.: Diffusivity of bacteria. Korean J. Chem. Eng. 13(3), 282–287 (1996)
26.
Zurück zum Zitat Neilson, M.P., MacKenzie, J.A., Webb, S.D., Insall, R.H.: Modeling cell movement and chemotaxis using pseudopod-based feedback. SIAM J. Sci. Comput. 33(3), 1035–1057 (2011) Neilson, M.P., MacKenzie, J.A., Webb, S.D., Insall, R.H.: Modeling cell movement and chemotaxis using pseudopod-based feedback. SIAM J. Sci. Comput. 33(3), 1035–1057 (2011)
27.
Zurück zum Zitat Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol 19, 2nd edn. Americal Mathematical Society, Providence 49, 22–25 (1998). Evans, L.C.: Partial Differential Equations, Graduate Studies in Mathematics, vol 19, 2nd edn. Americal Mathematical Society, Providence 49, 22–25 (1998).
28.
Zurück zum Zitat Gefen, A.: Effects of virus size and cell stiffness on forces, work and pressures driving membrane invagination in a receptor-mediated endocytosis. J. Biomech. Eng. (ASME) 132(8), 4501–4505 (2010). Gefen, A.: Effects of virus size and cell stiffness on forces, work and pressures driving membrane invagination in a receptor-mediated endocytosis. J. Biomech. Eng. (ASME) 132(8), 4501–4505 (2010).
29.
Zurück zum Zitat Vermolen, F.J., Javierre, E.: A finite-element model for healing of cutaneous wounds combining contraction, angiogenesis and closure. J. Math. Biol. doi:10.1007/s00285-011-0487-4 Vermolen, F.J., Javierre, E.: A finite-element model for healing of cutaneous wounds combining contraction, angiogenesis and closure. J. Math. Biol. doi:10.​1007/​s00285-011-0487-4
30.
Zurück zum Zitat Sachdev, P.L.: Nonlinear Diffusive Waves. Cambridge University Press, Cambridge (1987) Sachdev, P.L.: Nonlinear Diffusive Waves. Cambridge University Press, Cambridge (1987)
31.
Zurück zum Zitat de Vries, G., Hillen, Th., Lewis, M., Müller, J., Schönfisch, B.: A Course in Mathematical Biology: Quantitative Modeling with Mathematical and Computational Methods. SIAM, Philadelphia (2006) de Vries, G., Hillen, Th., Lewis, M., Müller, J., Schönfisch, B.: A Course in Mathematical Biology: Quantitative Modeling with Mathematical and Computational Methods. SIAM, Philadelphia (2006)
32.
Zurück zum Zitat Prokharau, P.A., Vermolen, F.J., Garcia-Aznar, J.M.: Model for direct bone apposition on pre- existing surfaces during peri-implant osseointegration. J. Theor. Biol. 304, 131–142 (2012) Prokharau, P.A., Vermolen, F.J., Garcia-Aznar, J.M.: Model for direct bone apposition on pre- existing surfaces during peri-implant osseointegration. J. Theor. Biol. 304, 131–142 (2012)
Metadaten
Titel
Wound Healing: Multi-Scale Modeling
verfasst von
Fred J. Vermolen
Amit Gefen
Copyright-Jahr
2013
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/8415_2012_156

Neuer Inhalt