Skip to main content
Erschienen in: Journal of Electronic Materials 9/2023

02.07.2023 | Original Research Article

X-shaped Photonic Crystal Waveguide with Phase-Change Materials for Non-blocking Wavelength-Selective Routing

verfasst von: Juan Zhang, Mingwei Zhao, Dongyu Zhang, Yang Wang

Erschienen in: Journal of Electronic Materials | Ausgabe 9/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A 2 × 2 photonic crystal (PC) wavelength router unit (WRU) is proposed. Different from traditional WRUs composed of a cross waveguide and one or two microring resonators, it only consists of a single X-shaped cross waveguide. The refractive index of four key PC rods produced with a phase-change material can be adjusted to realize a flexible optical routing function. Four WRUs of this structure are combined to realize a 4 × 4 non-blocking wavelength selective router, which has a device size of only 520 μm2. As far as the non-blocking routing function is concerned, the signal-to-noise ratios (SNRs) of the 4 × 4 PC router are 19.43–23.3 dB at 1550 nm. As to the wavelength selective routing function, the 4 × 4 PC router achieves the maximum insertion loss of 0.451 dB at 1550 nm and the maximum crosstalk of −17.514 dB at 1420 nm, respectively. Not only is the device structure greatly simplified, but its size is notably reduced and the device performance is also improved. The proposed PC router unit can be easily scaled to realize a higher radix non-blocking optical routing system, which is useful in optical networks-on-chips (ONoCs).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat R.G. Beausoleil, P.J. Kuekes, G.S. Snider, S.Y. Wang, and R.S. Williams, Nanoelectronic and nanophotonic interconnect. Proc. IEEE 96, 230 (2008).CrossRef R.G. Beausoleil, P.J. Kuekes, G.S. Snider, S.Y. Wang, and R.S. Williams, Nanoelectronic and nanophotonic interconnect. Proc. IEEE 96, 230 (2008).CrossRef
2.
Zurück zum Zitat B.G. Lee, A. Biberman, J. Chan, and K. Bergman, High-performance modulators and switches for silicon photonic networks-on-chip. IEEE J. Sel. Top. Quantum Electron. 16, 6 (2010).CrossRef B.G. Lee, A. Biberman, J. Chan, and K. Bergman, High-performance modulators and switches for silicon photonic networks-on-chip. IEEE J. Sel. Top. Quantum Electron. 16, 6 (2010).CrossRef
3.
Zurück zum Zitat D.A.B. Miller, Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166 (2009).CrossRef D.A.B. Miller, Device requirements for optical interconnects to silicon chips. Proc. IEEE 97, 1166 (2009).CrossRef
4.
Zurück zum Zitat T. Hu, H. Qiu, P. Yu, C. Qiu, W. Wang, X. Jiang, M. Yang, and J. Yang, Wavelength-selective 4 × 4 nonblocking silicon optical router for networks-on-chip. Opt. Lett. 36, 4710 (2011).CrossRef T. Hu, H. Qiu, P. Yu, C. Qiu, W. Wang, X. Jiang, M. Yang, and J. Yang, Wavelength-selective 4 × 4 nonblocking silicon optical router for networks-on-chip. Opt. Lett. 36, 4710 (2011).CrossRef
5.
Zurück zum Zitat R. Min, R. Ji, Q. Chen, L. Zhang, and L. Yang, A universal method for constructing N-port nonblocking optical router for photonic networks-on-chip. J. Light. Technol. 30, 3736 (2012).CrossRef R. Min, R. Ji, Q. Chen, L. Zhang, and L. Yang, A universal method for constructing N-port nonblocking optical router for photonic networks-on-chip. J. Light. Technol. 30, 3736 (2012).CrossRef
6.
Zurück zum Zitat R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, Five-port optical router for photonic networks-on-chip. Opt. Express 19, 20258 (2011).CrossRef R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, Five-port optical router for photonic networks-on-chip. Opt. Express 19, 20258 (2011).CrossRef
7.
Zurück zum Zitat H. Jia, Y. Zhao, L. Zhang, Q. Chen, J. Ding, X. Fu, and L. Yang, Five-port optical router based on silicon microring optical switches for photonic networks-on-chip. IEEE Photonics Technol. Lett. 28, 947 (2016). H. Jia, Y. Zhao, L. Zhang, Q. Chen, J. Ding, X. Fu, and L. Yang, Five-port optical router based on silicon microring optical switches for photonic networks-on-chip. IEEE Photonics Technol. Lett. 28, 947 (2016).
8.
Zurück zum Zitat R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, Microring-resonator-based four-port optical router for photonic networks-on-chip. Opt. Express 19, 18945 (2011).CrossRef R. Ji, L. Yang, L. Zhang, Y. Tian, J. Ding, H. Chen, Y. Lu, P. Zhou, and W. Zhu, Microring-resonator-based four-port optical router for photonic networks-on-chip. Opt. Express 19, 18945 (2011).CrossRef
9.
Zurück zum Zitat G. Calò and V. Petruzzelli, Wavelength routers for optical networks-on-chip using optimized photonic crystal ring resonators. IEEE Photonics J. 5, 7901011 (2013).CrossRef G. Calò and V. Petruzzelli, Wavelength routers for optical networks-on-chip using optimized photonic crystal ring resonators. IEEE Photonics J. 5, 7901011 (2013).CrossRef
10.
Zurück zum Zitat G. Calò and V. Petruzzelli, Compact design of photonic crystal ring resonator 2 × 2 routers as building blocks for photonic networks on chip. J. Opt. Soc. Am. B 31, 517 (2014).CrossRef G. Calò and V. Petruzzelli, Compact design of photonic crystal ring resonator 2 × 2 routers as building blocks for photonic networks on chip. J. Opt. Soc. Am. B 31, 517 (2014).CrossRef
11.
Zurück zum Zitat T. Sridarshini and S.I. Gandhi, Compact 3 × 3 wavelength routing for photonic integrated circuits. Photon Netw. Commun. 36, 68 (2018).CrossRef T. Sridarshini and S.I. Gandhi, Compact 3 × 3 wavelength routing for photonic integrated circuits. Photon Netw. Commun. 36, 68 (2018).CrossRef
12.
Zurück zum Zitat J. Lu, H. Ren, S. Guo, Z. Wu, Y. Qin, W. Hu, and C. Jiang, Wavelength routers with low crosstalk using photonic crystal point defect micro-cavities. Optik 127, 3235 (2016).CrossRef J. Lu, H. Ren, S. Guo, Z. Wu, Y. Qin, W. Hu, and C. Jiang, Wavelength routers with low crosstalk using photonic crystal point defect micro-cavities. Optik 127, 3235 (2016).CrossRef
13.
Zurück zum Zitat R. Sathyadevaki, D.S. Sundar, and A.S. Raja, Photonic crystal 4 × 4 dynamic hitless routers for integrated photonic NoCs. Photonic Netw. Commun. 36, 82 (2018).CrossRef R. Sathyadevaki, D.S. Sundar, and A.S. Raja, Photonic crystal 4 × 4 dynamic hitless routers for integrated photonic NoCs. Photonic Netw. Commun. 36, 82 (2018).CrossRef
14.
Zurück zum Zitat S. Thirumaran, S. Sundar Dhanabalan, and I. Gandhi Sannasi, Design and analysis of photonic crystal ring resonator based 6 × 6 wavelength router for photonic integrated circuits. IET Optoelectron. 15, 40 (2021).CrossRef S. Thirumaran, S. Sundar Dhanabalan, and I. Gandhi Sannasi, Design and analysis of photonic crystal ring resonator based 6 × 6 wavelength router for photonic integrated circuits. IET Optoelectron. 15, 40 (2021).CrossRef
15.
Zurück zum Zitat J. Zhang, M. Zhao, and Y. Wang, Compact configuration of wavelength-selective non-blocking photonic crystal optical router for networks-on-chip. Optik 254, 168693 (2022).CrossRef J. Zhang, M. Zhao, and Y. Wang, Compact configuration of wavelength-selective non-blocking photonic crystal optical router for networks-on-chip. Optik 254, 168693 (2022).CrossRef
16.
Zurück zum Zitat Q. Wang, E.T.F. Rogers, B. Gholipour, C.M. Wang, G. Yuan, J. Teng, and N.I. Zhuludev, Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 10, 60 (2016).CrossRef Q. Wang, E.T.F. Rogers, B. Gholipour, C.M. Wang, G. Yuan, J. Teng, and N.I. Zhuludev, Optically reconfigurable metasurfaces and photonic devices based on phase change materials. Nat. Photonics 10, 60 (2016).CrossRef
17.
Zurück zum Zitat Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. Opt. Lett. 43, 94 (2018).CrossRef Q. Zhang, Y. Zhang, J. Li, R. Soref, T. Gu, and J. Hu, Broadband nonvolatile photonic switching based on optical phase change materials: beyond the classical figure-of-merit. Opt. Lett. 43, 94 (2018).CrossRef
18.
Zurück zum Zitat F. De Leonardis, R. Soref, V.M.N. Passaro, Y. Zhang, and J. Hu, Broadband electro-optical crossbar switches using low-loss Ge2Sb2Se4Te1 phase change material. J. Light. Technol. 37, 3183 (2019).CrossRef F. De Leonardis, R. Soref, V.M.N. Passaro, Y. Zhang, and J. Hu, Broadband electro-optical crossbar switches using low-loss Ge2Sb2Se4Te1 phase change material. J. Light. Technol. 37, 3183 (2019).CrossRef
19.
Zurück zum Zitat P. Xu, J. Zheng, J. Doylend, and A. Majumdar, Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photonics 6, 553 (2019).CrossRef P. Xu, J. Zheng, J. Doylend, and A. Majumdar, Low-loss and broadband nonvolatile phase-change directional coupler switches. ACS Photonics 6, 553 (2019).CrossRef
20.
Zurück zum Zitat J. Zhang, M. Zhang, H. Liu, Y. Ding, and Y. Wang, Phase-change photonic crystal ring resonator for reconfigurable directional-coupler switching. Photonics Nanostruct. Fundam. Appl. 41, 100798 (2020).CrossRef J. Zhang, M. Zhang, H. Liu, Y. Ding, and Y. Wang, Phase-change photonic crystal ring resonator for reconfigurable directional-coupler switching. Photonics Nanostruct. Fundam. Appl. 41, 100798 (2020).CrossRef
21.
Zurück zum Zitat A. Gyanathan and Y.C. Yeo, Multi-level phase change memory devices with Ge2Sb2Te5 layers separated by a thermal insulating Ta2O5 barrier layer. J. Appl. Phys. 110, 124517 (2011).CrossRef A. Gyanathan and Y.C. Yeo, Multi-level phase change memory devices with Ge2Sb2Te5 layers separated by a thermal insulating Ta2O5 barrier layer. J. Appl. Phys. 110, 124517 (2011).CrossRef
22.
Zurück zum Zitat B.J. Choi, S. Choi, T. Eom, H.R. Sang, K.M. Kim, and C.S. Hwang, Phase change memory cell using Ge2Sb2Te5 and softly broken-down TiO2 films for multilevel operation. Appl. Phys. Lett. 97, 132107 (2010).CrossRef B.J. Choi, S. Choi, T. Eom, H.R. Sang, K.M. Kim, and C.S. Hwang, Phase change memory cell using Ge2Sb2Te5 and softly broken-down TiO2 films for multilevel operation. Appl. Phys. Lett. 97, 132107 (2010).CrossRef
23.
Zurück zum Zitat Y. Meng, J.K. Behera, S. Wen, R.E. Simpson, J. Shi, L. Wu, Z. Song, J. Wei, and Y. Wang, Ultrafast multilevel optical tuning with CSb2Te3 thin films. Adv. Opt. Mater. 6, 1800360 (2018).CrossRef Y. Meng, J.K. Behera, S. Wen, R.E. Simpson, J. Shi, L. Wu, Z. Song, J. Wei, and Y. Wang, Ultrafast multilevel optical tuning with CSb2Te3 thin films. Adv. Opt. Mater. 6, 1800360 (2018).CrossRef
24.
Zurück zum Zitat S. Wen, Y. Meng, M. Jiang, and Y. Wang, Multi-level coding-recoding by ultrafast phase transition on Ge2Sb2T5 thin films. Sci. Rep. 8, 4979 (2018).CrossRef S. Wen, Y. Meng, M. Jiang, and Y. Wang, Multi-level coding-recoding by ultrafast phase transition on Ge2Sb2T5 thin films. Sci. Rep. 8, 4979 (2018).CrossRef
25.
Zurück zum Zitat M. Plihal and A.A. Maradudin, Photonic band structure of two-dimensional systems: the triangular lattice. Phys. Rev. B 44, 8565 (1991).CrossRef M. Plihal and A.A. Maradudin, Photonic band structure of two-dimensional systems: the triangular lattice. Phys. Rev. B 44, 8565 (1991).CrossRef
26.
Zurück zum Zitat S. Fan, S.G. Johnson, J.D. Joannopoulos, C. Manolatou, and H.A. Haus, Waveguide branches in photonic crystals. J. Opt. Soc. Am. B 18, 162 (2001).CrossRef S. Fan, S.G. Johnson, J.D. Joannopoulos, C. Manolatou, and H.A. Haus, Waveguide branches in photonic crystals. J. Opt. Soc. Am. B 18, 162 (2001).CrossRef
27.
Zurück zum Zitat C. Manolatou, S.G. Johnson, S. Fan, P.R. Villeneuve, H.A. Haus, and J.D. Joannopoulos, High-density integrated optics. J. Lightwave Technol. 17, 1682 (1999).CrossRef C. Manolatou, S.G. Johnson, S. Fan, P.R. Villeneuve, H.A. Haus, and J.D. Joannopoulos, High-density integrated optics. J. Lightwave Technol. 17, 1682 (1999).CrossRef
28.
Zurück zum Zitat K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Antennas Propag. Soc. 14, 302 (1966).CrossRef K. Yee, Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Antennas Propag. Soc. 14, 302 (1966).CrossRef
Metadaten
Titel
X-shaped Photonic Crystal Waveguide with Phase-Change Materials for Non-blocking Wavelength-Selective Routing
verfasst von
Juan Zhang
Mingwei Zhao
Dongyu Zhang
Yang Wang
Publikationsdatum
02.07.2023
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 9/2023
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-023-10549-w

Weitere Artikel der Ausgabe 9/2023

Journal of Electronic Materials 9/2023 Zur Ausgabe

Neuer Inhalt