Skip to main content
Erschienen in: Meccanica 7/2014

01.07.2014

Young’s modulus prediction of hexagonal nanosheets and nanotubes based on dimensional analysis and atomistic simulations

verfasst von: Minh-Quy Le

Erschienen in: Meccanica | Ausgabe 7/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The present work investigates Young’s modulus of hexagonal nanosheets and nanotubes based on dimensional analysis and molecular mechanics. Using second derivatives of the strain energy density revealed from molecular dynamics simulations at 0 K (i.e., molecular mechanics) with harmonic potentials for various combinations of force constants, Young’s modulus have been computed for single-walled armchair and zigzag nanotubes of different radii. This parametric study with the aid of dimensional analysis allows explicitly establishing Young’s modulus of (n, n) armchair and (n, 0) zigzag nanotubes as functions of the force constants, bond length and chiral index n. Proposed formulae are applied to estimate Young’s modulus of graphene, boron nitride, silicon carbide sheets and their nanotubes. The accuracy of the proposed formulae are verified and discussed with available data in the literature for these three sheets and their nanotubes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
2.
Zurück zum Zitat Fan Y (2011) Formation of crystalline AlN nanotubes by a roll-up approach. Mater Lett 65:1900–1902CrossRef Fan Y (2011) Formation of crystalline AlN nanotubes by a roll-up approach. Mater Lett 65:1900–1902CrossRef
3.
Zurück zum Zitat Sorokin PB, Fedorov AS, Chernozatonskiĭ LA (2006) Structure and properties of BeO nanotubes. Phys Solid State 48:398–401ADSCrossRef Sorokin PB, Fedorov AS, Chernozatonskiĭ LA (2006) Structure and properties of BeO nanotubes. Phys Solid State 48:398–401ADSCrossRef
4.
Zurück zum Zitat Chopra NG, Luyken RJ, Cherry K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269:966–967ADSCrossRef Chopra NG, Luyken RJ, Cherry K, Crespi VH, Cohen ML, Louie SG, Zettl A (1995) Boron nitride nanotubes. Science 269:966–967ADSCrossRef
5.
Zurück zum Zitat Zhi C, Bando Y, Tang C, Golberg D (2010) Boron nitride nanotubes. Mater Sci Eng R 70:92–111CrossRef Zhi C, Bando Y, Tang C, Golberg D (2010) Boron nitride nanotubes. Mater Sci Eng R 70:92–111CrossRef
6.
Zurück zum Zitat Sun XH, Li CP, Wong WK, Wong NB, Lee CS, Lee ST, Teo BK (2002) Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J Am Chem Soc 124:14464CrossRef Sun XH, Li CP, Wong WK, Wong NB, Lee CS, Lee ST, Teo BK (2002) Formation of silicon carbide nanotubes and nanowires via reaction of silicon (from disproportionation of silicon monoxide) with carbon nanotubes. J Am Chem Soc 124:14464CrossRef
7.
Zurück zum Zitat Pacilé D, Meyer JC, Girit ÇÖ, Zettl A (2008) The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl Phys Lett 92:133107ADSCrossRef Pacilé D, Meyer JC, Girit ÇÖ, Zettl A (2008) The two-dimensional phase of boron nitride: few-atomic-layer sheets and suspended membranes. Appl Phys Lett 92:133107ADSCrossRef
8.
Zurück zum Zitat Shi Y, Hamsen C, Jia X, Kim KK, Reina A, Hofmann M, Hsu AL, Zhang K, Li H, Juang ZY, Dresselhaus MS, Li LJ, Kong J (2010) Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett 10:4134ADSCrossRef Shi Y, Hamsen C, Jia X, Kim KK, Reina A, Hofmann M, Hsu AL, Zhang K, Li H, Juang ZY, Dresselhaus MS, Li LJ, Kong J (2010) Synthesis of few-layer hexagonal boron nitride thin film by chemical vapor deposition. Nano Lett 10:4134ADSCrossRef
9.
Zurück zum Zitat Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan PM (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10:3209ADSCrossRef Song L, Ci L, Lu H, Sorokin PB, Jin C, Ni J, Kvashnin AG, Kvashnin DG, Lou J, Yakobson BI, Ajayan PM (2010) Large scale growth and characterization of atomic hexagonal boron nitride layers. Nano Lett 10:3209ADSCrossRef
10.
Zurück zum Zitat Lin SS (2012) Light-emitting two-dimensional ultrathin silicon carbide. J Phys Chem C 116:3951CrossRef Lin SS (2012) Light-emitting two-dimensional ultrathin silicon carbide. J Phys Chem C 116:3951CrossRef
11.
Zurück zum Zitat Chang T, Gao H (2003) Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solids 51:1059–1074ADSCrossRefMATH Chang T, Gao H (2003) Size-dependent elastic properties of a single-walled carbon nanotube via a molecular mechanics model. J Mech Phys Solids 51:1059–1074ADSCrossRefMATH
12.
Zurück zum Zitat Natsuki T, Tantrakarn K, Endo M (2004) Prediction of elastic properties for single-walled carbon nanotubes. Carbon 42:39–45CrossRef Natsuki T, Tantrakarn K, Endo M (2004) Prediction of elastic properties for single-walled carbon nanotubes. Carbon 42:39–45CrossRef
13.
Zurück zum Zitat Jiang L, Guo W (2011) A molecular mechanics study on size-dependent elastic properties of single-walled boron nitride nanotubes. J Mech Phys Solids 59:1204–1213ADSCrossRefMATHMathSciNet Jiang L, Guo W (2011) A molecular mechanics study on size-dependent elastic properties of single-walled boron nitride nanotubes. J Mech Phys Solids 59:1204–1213ADSCrossRefMATHMathSciNet
14.
Zurück zum Zitat Cheng Y, Shi G (2012) The prediction of mechanical properties of graphene by molecular mechanics and structural mechanics method. Adv Mater Res 583:403–407CrossRef Cheng Y, Shi G (2012) The prediction of mechanical properties of graphene by molecular mechanics and structural mechanics method. Adv Mater Res 583:403–407CrossRef
15.
Zurück zum Zitat Berinskii IE, Borodich FM (2013) Elastic in-plane properties of 2D linearized models of graphene. Mech Mater 62:60–68CrossRef Berinskii IE, Borodich FM (2013) Elastic in-plane properties of 2D linearized models of graphene. Mech Mater 62:60–68CrossRef
16.
Zurück zum Zitat Odegard GM, Gates TS, Nicholson LM, Wise KE (2002) Equivalent-continuum modeling of nano-structured materials. Compos Sci Technol 62:1869–1880CrossRef Odegard GM, Gates TS, Nicholson LM, Wise KE (2002) Equivalent-continuum modeling of nano-structured materials. Compos Sci Technol 62:1869–1880CrossRef
17.
Zurück zum Zitat Li C, Chou TW (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40:2487–2499CrossRefMATH Li C, Chou TW (2003) A structural mechanics approach for the analysis of carbon nanotubes. Int J Solids Struct 40:2487–2499CrossRefMATH
18.
Zurück zum Zitat Tserpes KI, Papanikos P (2005) Finite element modeling of single-walled carbon nanotubes. Compos B 36:468–477CrossRef Tserpes KI, Papanikos P (2005) Finite element modeling of single-walled carbon nanotubes. Compos B 36:468–477CrossRef
19.
Zurück zum Zitat Scarpa F, Adhikari S, Phani AS (2009) Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20:065709ADSCrossRef Scarpa F, Adhikari S, Phani AS (2009) Effective elastic mechanical properties of single layer graphene sheets. Nanotechnology 20:065709ADSCrossRef
20.
Zurück zum Zitat Shokrieh MM, Rafiee R (2010) Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Mater Des 31:790–795CrossRef Shokrieh MM, Rafiee R (2010) Prediction of Young’s modulus of graphene sheets and carbon nanotubes using nanoscale continuum mechanics approach. Mater Des 31:790–795CrossRef
21.
Zurück zum Zitat Lei X, Natsuki T, Shi J, Ni QQ (2011) Analysis of carbon nanotubes on the mechanical properties at atomic scale. J Nanomater 2011:1CrossRef Lei X, Natsuki T, Shi J, Ni QQ (2011) Analysis of carbon nanotubes on the mechanical properties at atomic scale. J Nanomater 2011:1CrossRef
22.
Zurück zum Zitat Boldrin L, Scarpa F, Chowdhury R, Adhikari S (2011) Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology 22:505702CrossRef Boldrin L, Scarpa F, Chowdhury R, Adhikari S (2011) Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology 22:505702CrossRef
23.
Zurück zum Zitat Scarpa F, Adhikari S (2008) A mechanical equivalence for Poisson’s ratio and thickness of C–C bonds in single wall carbon nanotubes. J Phys D Appl Phys 41(8):085306ADSCrossRef Scarpa F, Adhikari S (2008) A mechanical equivalence for Poisson’s ratio and thickness of C–C bonds in single wall carbon nanotubes. J Phys D Appl Phys 41(8):085306ADSCrossRef
24.
Zurück zum Zitat Liu X, Metcalf TH, Robinson JT, Houston BH, Scarpa F (2012) Shear modulus of monolayer graphene prepared by chemical vapor deposition. Nano Lett 12(2):1013–1017ADSCrossRef Liu X, Metcalf TH, Robinson JT, Houston BH, Scarpa F (2012) Shear modulus of monolayer graphene prepared by chemical vapor deposition. Nano Lett 12(2):1013–1017ADSCrossRef
25.
Zurück zum Zitat Kudin KN, Scuseria GE, Yakobson BI (2001) C2F, BN, and C nanoshell elasticity from ab initio computations. Phys Rev B 64:235406ADSCrossRef Kudin KN, Scuseria GE, Yakobson BI (2001) C2F, BN, and C nanoshell elasticity from ab initio computations. Phys Rev B 64:235406ADSCrossRef
26.
Zurück zum Zitat Tu ZC, Ou-Yang Z (2002) Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number. Phys Rev B 65:233407ADSCrossRef Tu ZC, Ou-Yang Z (2002) Single-walled and multiwalled carbon nanotubes viewed as elastic tubes with the effective Young’s moduli dependent on layer number. Phys Rev B 65:233407ADSCrossRef
27.
Zurück zum Zitat Pantano A, Parks DM, Boyce MC (2004) Mechanics of deformation of single- and multi-wall carbon nanotubes. J Mech Phys Solids 52:789ADSCrossRefMATH Pantano A, Parks DM, Boyce MC (2004) Mechanics of deformation of single- and multi-wall carbon nanotubes. J Mech Phys Solids 52:789ADSCrossRefMATH
28.
Zurück zum Zitat Huang Y, Wu J, Hwang KC (2006) Thickness of graphene and single-wall carbon nanotubes. Phys Rev B 74:245413ADSCrossRef Huang Y, Wu J, Hwang KC (2006) Thickness of graphene and single-wall carbon nanotubes. Phys Rev B 74:245413ADSCrossRef
29.
Zurück zum Zitat Ru CQ (2009) Chirality-dependent mechanical behavior of carbon nanotubes based on an anisotropic elastic shell model. Math Mech Solids 14:88–101CrossRefMATHMathSciNet Ru CQ (2009) Chirality-dependent mechanical behavior of carbon nanotubes based on an anisotropic elastic shell model. Math Mech Solids 14:88–101CrossRefMATHMathSciNet
30.
Zurück zum Zitat Chang T (2010) A molecular based anisotropic shell model for single-walled carbon nanotubes. J Mech Phys Solids 58:1422–1433ADSCrossRefMathSciNet Chang T (2010) A molecular based anisotropic shell model for single-walled carbon nanotubes. J Mech Phys Solids 58:1422–1433ADSCrossRefMathSciNet
31.
Zurück zum Zitat Arroyo M, Belytschko T (2002) An atomistic-based finite deformation membrane for single layer crystalline films. J Mech Phys Solids 50:1941–1977ADSCrossRefMATHMathSciNet Arroyo M, Belytschko T (2002) An atomistic-based finite deformation membrane for single layer crystalline films. J Mech Phys Solids 50:1941–1977ADSCrossRefMATHMathSciNet
32.
Zurück zum Zitat Zhang P, Huang Y, Geubelle PH (2002) The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int J Solids Struct 39:3893–3906CrossRefMATH Zhang P, Huang Y, Geubelle PH (2002) The elastic modulus of single-wall carbon nanotubes: a continuum analysis incorporating interatomic potentials. Int J Solids Struct 39:3893–3906CrossRefMATH
33.
Zurück zum Zitat Jiang H, Zhang P, Liu B, Huang Y, Geubelle PH, Gao H, Hwang KC (2003) The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput Mater Sci 28:429–442CrossRef Jiang H, Zhang P, Liu B, Huang Y, Geubelle PH, Gao H, Hwang KC (2003) The effect of nanotube radius on the constitutive model for carbon nanotubes. Comput Mater Sci 28:429–442CrossRef
34.
Zurück zum Zitat Zhang HW, Wang JB, Guo X (2005) Predicting the elastic properties of single-walled carbon nanotubes. J Mech Phys Solids 53:1929–1950ADSCrossRefMATH Zhang HW, Wang JB, Guo X (2005) Predicting the elastic properties of single-walled carbon nanotubes. J Mech Phys Solids 53:1929–1950ADSCrossRefMATH
35.
Zurück zum Zitat Nasdala L, Kempe A, Rolfes R (2012) Are finite elements appropriate for use in molecular dynamic simulations. Compos Sci Technol 72:989–1000CrossRef Nasdala L, Kempe A, Rolfes R (2012) Are finite elements appropriate for use in molecular dynamic simulations. Compos Sci Technol 72:989–1000CrossRef
36.
Zurück zum Zitat Zhao J, Wang L, Jiang JW, Wang Z, Guo W, Rabczuk T (2013) A comparative study of two molecular mechanics models based on harmonic potentials. J Appl Phys 113:063509ADSCrossRef Zhao J, Wang L, Jiang JW, Wang Z, Guo W, Rabczuk T (2013) A comparative study of two molecular mechanics models based on harmonic potentials. J Appl Phys 113:063509ADSCrossRef
37.
Zurück zum Zitat Burkert U, Allinger NL (1982) Molecular mechanics. ACS Monograph 177. American Chemical Society, Washington, DC Burkert U, Allinger NL (1982) Molecular mechanics. ACS Monograph 177. American Chemical Society, Washington, DC
38.
Zurück zum Zitat Leach AR (2001) Molecular modelling principles and applications, chapter 4, 2nd edn. Prentice Hall, Englewood Cliffs Leach AR (2001) Molecular modelling principles and applications, chapter 4, 2nd edn. Prentice Hall, Englewood Cliffs
39.
Zurück zum Zitat Rappe AK, Casewit CJ (1997) Molecular mechanics across chemistry. University Science Books Rappe AK, Casewit CJ (1997) Molecular mechanics across chemistry. University Science Books
40.
Zurück zum Zitat Barenblatt GI (1996) Scaling, self-similarity, and intermediate asymptotics. Cambridge University Press, CambridgeMATH Barenblatt GI (1996) Scaling, self-similarity, and intermediate asymptotics. Cambridge University Press, CambridgeMATH
41.
Zurück zum Zitat Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33:883–891CrossRef Dresselhaus MS, Dresselhaus G, Saito R (1995) Physics of carbon nanotubes. Carbon 33:883–891CrossRef
42.
Zurück zum Zitat Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1ADSCrossRefMATH Plimpton SJ (1995) Fast parallel algorithms for short-range molecular dynamics. J Comp Phys 117:1ADSCrossRefMATH
43.
Zurück zum Zitat Mirnezhad M, Modarresi M, Ansari R, Roknabadi MR (2012) Effect of temperature on Young’s modulus of graphene. J Therm Stress 35:913–920CrossRef Mirnezhad M, Modarresi M, Ansari R, Roknabadi MR (2012) Effect of temperature on Young’s modulus of graphene. J Therm Stress 35:913–920CrossRef
44.
Zurück zum Zitat Mirnezhad M, Ansari R, Shahabodini A (2013) Temperature effect on Young’s modulus of boron nitride sheets. J Therm Stress 36:152–159CrossRef Mirnezhad M, Ansari R, Shahabodini A (2013) Temperature effect on Young’s modulus of boron nitride sheets. J Therm Stress 36:152–159CrossRef
45.
Zurück zum Zitat Schneider T, Stoll E (1978) Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys Rev B 17:1302–1322ADSCrossRef Schneider T, Stoll E (1978) Molecular-dynamics study of a three-dimensional one-component model for distortive phase transitions. Phys Rev B 17:1302–1322ADSCrossRef
46.
Zurück zum Zitat Le MQ, Batra RC (2013) Single-edge crack growth in graphene sheets under tension. Comput Mater Sci 69:381–388CrossRef Le MQ, Batra RC (2013) Single-edge crack growth in graphene sheets under tension. Comput Mater Sci 69:381–388CrossRef
47.
Zurück zum Zitat Le MQ, Batra RC (2014) Crack propagation in pre-strained single layer graphene sheets. Comput Mater Sci 84:238–243CrossRef Le MQ, Batra RC (2014) Crack propagation in pre-strained single layer graphene sheets. Comput Mater Sci 84:238–243CrossRef
48.
Zurück zum Zitat Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skid WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114(25):10024CrossRef Rappe AK, Casewit CJ, Colwell KS, Goddard WA III, Skid WM (1992) UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations. J Am Chem Soc 114(25):10024CrossRef
49.
Zurück zum Zitat Claeyssens F, Freeman CL, Allan NL, Sun Y, Ashfold MNR, Harding JH (2005) Growth of ZnO thin films—experiment and theory. J Mater Chem 15:139–148CrossRef Claeyssens F, Freeman CL, Allan NL, Sun Y, Ashfold MNR, Harding JH (2005) Growth of ZnO thin films—experiment and theory. J Mater Chem 15:139–148CrossRef
50.
Zurück zum Zitat Tu ZC, Hu X (2006) Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes. Phys Rev B 74:035434ADSCrossRef Tu ZC, Hu X (2006) Elasticity and piezoelectricity of zinc oxide crystals, single layers, and possible single-walled nanotubes. Phys Rev B 74:035434ADSCrossRef
51.
Zurück zum Zitat Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S (2009) Monolayer honeycomb structures of group-IV elements and III–V binary compounds: first-principles calculations. Phys Rev B 80:155453ADSCrossRef Sahin H, Cahangirov S, Topsakal M, Bekaroglu E, Akturk E, Senger RT, Ciraci S (2009) Monolayer honeycomb structures of group-IV elements and III–V binary compounds: first-principles calculations. Phys Rev B 80:155453ADSCrossRef
52.
Zurück zum Zitat Topsakal M, Aktürk E, Ciraci S (2009) First-principles study of two- and one-dimensional honeycomb structures of boron nitride. Phys Rev B 79:115442ADSCrossRef Topsakal M, Aktürk E, Ciraci S (2009) First-principles study of two- and one-dimensional honeycomb structures of boron nitride. Phys Rev B 79:115442ADSCrossRef
53.
Zurück zum Zitat Zhang CW (2012) First-principles study on electronic structures and magnetic properties of AlN nanosheets and nanoribbons. J Appl Phys 111:043702ADSCrossRef Zhang CW (2012) First-principles study on electronic structures and magnetic properties of AlN nanosheets and nanoribbons. J Appl Phys 111:043702ADSCrossRef
54.
Zurück zum Zitat Hansson A, Mota FB, Rivelino R (2012) Metallic behavior in low-dimensional honeycomb SiB crystals: a first-principles prediction of atomic structure and electronic properties. Phys Rev B 86:195416ADSCrossRef Hansson A, Mota FB, Rivelino R (2012) Metallic behavior in low-dimensional honeycomb SiB crystals: a first-principles prediction of atomic structure and electronic properties. Phys Rev B 86:195416ADSCrossRef
55.
Zurück zum Zitat Kınacı A, Haskins JB, Sevik C, Cagın T (2012) Thermal conductivity of BN–C nanostructures. Phys Rev B 86:115410ADSCrossRef Kınacı A, Haskins JB, Sevik C, Cagın T (2012) Thermal conductivity of BN–C nanostructures. Phys Rev B 86:115410ADSCrossRef
56.
Zurück zum Zitat Erhart P, Albe K (2005) Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Phys Rev B 71:035211ADSCrossRef Erhart P, Albe K (2005) Analytical potential for atomistic simulations of silicon, carbon, and silicon carbide. Phys Rev B 71:035211ADSCrossRef
57.
Zurück zum Zitat Blasé X, Rubio A, Louie SG, Cohen ML (1994) Stability and band gap constancy of boron nitride nanotubes. Europhys Lett 28:335ADSCrossRef Blasé X, Rubio A, Louie SG, Cohen ML (1994) Stability and band gap constancy of boron nitride nanotubes. Europhys Lett 28:335ADSCrossRef
58.
Zurück zum Zitat Baumeier B, Krüger P, Pollmann J (2007) Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Phys Rev B 76:085407ADSCrossRef Baumeier B, Krüger P, Pollmann J (2007) Structural, elastic, and electronic properties of SiC, BN, and BeO nanotubes. Phys Rev B 76:085407ADSCrossRef
59.
Zurück zum Zitat Alam KM, Ray AK (2008) Hybrid density functional study of armchair SiC nanotubes. Phys Rev B 77:035436ADSCrossRef Alam KM, Ray AK (2008) Hybrid density functional study of armchair SiC nanotubes. Phys Rev B 77:035436ADSCrossRef
60.
Zurück zum Zitat Zhang ZH, Guo WL, Dai YT (2009) Stability and electronic properties of small boron nitride nanotubes. J Appl Phys 105(8):084312ADSCrossRef Zhang ZH, Guo WL, Dai YT (2009) Stability and electronic properties of small boron nitride nanotubes. J Appl Phys 105(8):084312ADSCrossRef
61.
Zurück zum Zitat Bogar F, Mintmire JW, Bartha F, Mező T, Van Alsenoy C (2005) Density-functional study of the mechanical and electronic properties of narrow carbon nanotubes under axial stress. Phys Rev B 72:085452ADSCrossRef Bogar F, Mintmire JW, Bartha F, Mező T, Van Alsenoy C (2005) Density-functional study of the mechanical and electronic properties of narrow carbon nanotubes under axial stress. Phys Rev B 72:085452ADSCrossRef
62.
Zurück zum Zitat Ogata S, Shibutani Y (2003) Ideal tensile strength and band gap of single-walled carbon nanotubes. Phys Rev B 68:165409ADSCrossRef Ogata S, Shibutani Y (2003) Ideal tensile strength and band gap of single-walled carbon nanotubes. Phys Rev B 68:165409ADSCrossRef
63.
Zurück zum Zitat Hernández E, Goze C, Bernier P, Rubio A (1998) Elastic properties of C and BxCyNz composite nanotubes. Phys Rev Lett 80:4502ADSCrossRef Hernández E, Goze C, Bernier P, Rubio A (1998) Elastic properties of C and BxCyNz composite nanotubes. Phys Rev Lett 80:4502ADSCrossRef
64.
Zurück zum Zitat Ganji MD, Fereidoon A, Jahanshahi M, Ahangari MG (2012) Elastic properties of SWCNTs with curved morphology: density functional tight binding based treatment. Solid State Commun 152:1526–1530ADSCrossRef Ganji MD, Fereidoon A, Jahanshahi M, Ahangari MG (2012) Elastic properties of SWCNTs with curved morphology: density functional tight binding based treatment. Solid State Commun 152:1526–1530ADSCrossRef
65.
Zurück zum Zitat Fereidoon A, Ahangari MG, Ganji MD, Jahanshahi M (2012) Density functional theory investigation of the mechanical properties of single-walled carbon nanotubes. Comput Mater Sci 53:377–381CrossRef Fereidoon A, Ahangari MG, Ganji MD, Jahanshahi M (2012) Density functional theory investigation of the mechanical properties of single-walled carbon nanotubes. Comput Mater Sci 53:377–381CrossRef
66.
Zurück zum Zitat Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76:064120ADSCrossRef Liu F, Ming P, Li J (2007) Ab initio calculation of ideal strength and phonon instability of graphene under tension. Phys Rev B 76:064120ADSCrossRef
67.
Zurück zum Zitat Wei X, Fragneaud B, Marianetti CA, Kysar JW (2009) Nonlinear elastic behavior of graphene: ab initio calculations to continuum description. Phys Rev B 80:205407ADSCrossRef Wei X, Fragneaud B, Marianetti CA, Kysar JW (2009) Nonlinear elastic behavior of graphene: ab initio calculations to continuum description. Phys Rev B 80:205407ADSCrossRef
68.
Zurück zum Zitat Xu M, Paci JT, Oswald J, Belytschko T (2012) A constitutive equation for graphene based on density functional theory. Int J Solids Struct 49:2582–2589CrossRef Xu M, Paci JT, Oswald J, Belytschko T (2012) A constitutive equation for graphene based on density functional theory. Int J Solids Struct 49:2582–2589CrossRef
69.
Zurück zum Zitat Andrew RC, Mapasha RE, Ukpong AM, Chetty N (2012) Mechanical properties of graphene and boronitrene. Phys Rev B 85:125428ADSCrossRef Andrew RC, Mapasha RE, Ukpong AM, Chetty N (2012) Mechanical properties of graphene and boronitrene. Phys Rev B 85:125428ADSCrossRef
70.
Zurück zum Zitat Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388ADSCrossRef Lee C, Wei X, Kysar JW, Hone J (2008) Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321:385–388ADSCrossRef
71.
Zurück zum Zitat Peng Q, Ji W, De S (2012) Mechanical properties of the hexagonal boron nitride monolayer: ab initio study. Comput Mater Sci 56:11CrossRef Peng Q, Ji W, De S (2012) Mechanical properties of the hexagonal boron nitride monolayer: ab initio study. Comput Mater Sci 56:11CrossRef
72.
Zurück zum Zitat Le MQ (2014) Atomistic study on the tensile properties of hexagonal AlN, BN, GaN, InN and SiC sheets. J Comput Theor Nanosci 11:1458CrossRef Le MQ (2014) Atomistic study on the tensile properties of hexagonal AlN, BN, GaN, InN and SiC sheets. J Comput Theor Nanosci 11:1458CrossRef
73.
Zurück zum Zitat Bosak A, Serrano J, Krisch M, Watanabe K, Taniguchi T, Kanda H (2006) Elasticity of hexagonal boron nitride: inelastic x-ray scattering measurements. Phys Rev B 73:041402RADSCrossRef Bosak A, Serrano J, Krisch M, Watanabe K, Taniguchi T, Kanda H (2006) Elasticity of hexagonal boron nitride: inelastic x-ray scattering measurements. Phys Rev B 73:041402RADSCrossRef
Metadaten
Titel
Young’s modulus prediction of hexagonal nanosheets and nanotubes based on dimensional analysis and atomistic simulations
verfasst von
Minh-Quy Le
Publikationsdatum
01.07.2014
Verlag
Springer Netherlands
Erschienen in
Meccanica / Ausgabe 7/2014
Print ISSN: 0025-6455
Elektronische ISSN: 1572-9648
DOI
https://doi.org/10.1007/s11012-014-9976-z

Weitere Artikel der Ausgabe 7/2014

Meccanica 7/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.