Skip to main content
Erschienen in: Journal of Materials Science 4/2018

16.10.2017 | Biomaterials

Zeolitic imidazolate metal organic framework-8 as an efficient pH-controlled delivery vehicle for zinc phthalocyanine in photodynamic therapy

verfasst von: Mei-Ru Song, Dong-Yao Li, Fu-Yu Nian, Jin-Ping Xue, Juan-Juan Chen

Erschienen in: Journal of Materials Science | Ausgabe 4/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To improve the aqueous solubility and cancer targeting of the photosensitizers in photodynamic therapy (PDT), we encapsulated the photosensitizer in a biocompatibility and pH-sensitive drug delivery system, zeolitic imidazolate frameworks-8 (ZIF-8) nanospheres. Powder X-ray diffraction and electron microscopy show that our nanospheres are uniform and single-crystalline particles. Owing to the cleavage of zinc–ligand coordination bonds, more ZnPc–COOH were released much faster in the mild acidic conditions (pH 5.0 and 6.0) in comparison with physiological environment (pH 7.4). By incorporating ZnPc–COOH in ZIF-8, our nanospheres exhibited high singlet oxygen quantum yield and intracellular ROS generation. Cell viability experiments toward HepG2 cells demonstrated the low toxicity of ZIF-8 and the good anticancer efficacy of the nanospheres with low IC50 values (4.2–4.9 μg/mL) under light illumination (670 nm, 1.5 J/cm2). Collectively, these results suggested that our nanospheres are the promising pH-responsive drug delivery systems for PDT.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387CrossRef Dolmans DE, Fukumura D, Jain RK (2003) Photodynamic therapy for cancer. Nat Rev Cancer 3:380–387CrossRef
2.
Zurück zum Zitat Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 6:535–545CrossRef Castano AP, Mroz P, Hamblin MR (2006) Photodynamic therapy and anti-tumour immunity. Nat Rev Cancer 6:535–545CrossRef
3.
Zurück zum Zitat Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, Pogue BW, Hasan T (2010) Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 110:2795–2838CrossRef Celli JP, Spring BQ, Rizvi I, Evans CL, Samkoe KS, Verma S, Pogue BW, Hasan T (2010) Imaging and photodynamic therapy: mechanisms, monitoring, and optimization. Chem Rev 110:2795–2838CrossRef
4.
Zurück zum Zitat Lucky SS, Soo KC, Zhang Y (2015) Nanoparticles in photodynamic therapy. Chem Rev 115:1990–2042CrossRef Lucky SS, Soo KC, Zhang Y (2015) Nanoparticles in photodynamic therapy. Chem Rev 115:1990–2042CrossRef
5.
Zurück zum Zitat Patrice T, Rousset N, Bourré L, Thibaud S (2003) Sensitizers in photodynamic therapy. The Royal Society of Chemistry, LondonCrossRef Patrice T, Rousset N, Bourré L, Thibaud S (2003) Sensitizers in photodynamic therapy. The Royal Society of Chemistry, LondonCrossRef
6.
Zurück zum Zitat Brasseur N (2003) Sensitizers for photodynamic therapy: phthalocyanines. The Royal Society of Chemistry, London Brasseur N (2003) Sensitizers for photodynamic therapy: phthalocyanines. The Royal Society of Chemistry, London
7.
Zurück zum Zitat Gurol I, Durmus M, Ahsen V, Nyokong T (2007) Synthesis, photophysical and photochemical properties of substituted zinc phthalocyanines. Dalton Trans 34:3782–3791CrossRef Gurol I, Durmus M, Ahsen V, Nyokong T (2007) Synthesis, photophysical and photochemical properties of substituted zinc phthalocyanines. Dalton Trans 34:3782–3791CrossRef
8.
Zurück zum Zitat Sekkat N, Bergh HVD, Nyokong T, Lange N (2012) Like a bolt from the blue: phthalocyanines in biomedical optics. Molecules 17:98CrossRef Sekkat N, Bergh HVD, Nyokong T, Lange N (2012) Like a bolt from the blue: phthalocyanines in biomedical optics. Molecules 17:98CrossRef
9.
Zurück zum Zitat Singh S, Aggarwal A, Bhupathiraju NVSDK, Arianna G, Tiwari K, Drain CM (2015) Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics. Chem Rev 115:10261–10306CrossRef Singh S, Aggarwal A, Bhupathiraju NVSDK, Arianna G, Tiwari K, Drain CM (2015) Glycosylated porphyrins, phthalocyanines, and other porphyrinoids for diagnostics and therapeutics. Chem Rev 115:10261–10306CrossRef
10.
Zurück zum Zitat Dumoulin F, Durmuş M, Ahsen V, Nyokong T (2010) Synthetic pathways to water-soluble phthalocyanines and close analogs. Coord Chem Rev 254:2792–2847CrossRef Dumoulin F, Durmuş M, Ahsen V, Nyokong T (2010) Synthetic pathways to water-soluble phthalocyanines and close analogs. Coord Chem Rev 254:2792–2847CrossRef
11.
Zurück zum Zitat Makhseed S, Machacek M, Alfadly W, Tuhl A, Vinodh M, Simunek T, Novakova V, Kubat P, Rudolf E, Zimcik P (2013) Water-soluble non-aggregating zinc phthalocyanine and in vitro studies for photodynamic therapy. Chem Commun 49:11149–11151CrossRef Makhseed S, Machacek M, Alfadly W, Tuhl A, Vinodh M, Simunek T, Novakova V, Kubat P, Rudolf E, Zimcik P (2013) Water-soluble non-aggregating zinc phthalocyanine and in vitro studies for photodynamic therapy. Chem Commun 49:11149–11151CrossRef
12.
Zurück zum Zitat Bugaj AM (2011) Targeted photodynamic therapy—a promising strategy of tumor treatment. Photochem Photobiol Sci 10:1097–1109CrossRef Bugaj AM (2011) Targeted photodynamic therapy—a promising strategy of tumor treatment. Photochem Photobiol Sci 10:1097–1109CrossRef
13.
Zurück zum Zitat Zhang FL, Huang Q, Zheng K, Li J, Liu JY, Xue JP (2013) A novel strategy for targeting photodynamic therapy. Molecular combo of photodynamic agent zinc(II) phthalocyanine and small molecule target-based anticancer drug erlotinib. Chem Commun 49:9570–9572CrossRef Zhang FL, Huang Q, Zheng K, Li J, Liu JY, Xue JP (2013) A novel strategy for targeting photodynamic therapy. Molecular combo of photodynamic agent zinc(II) phthalocyanine and small molecule target-based anticancer drug erlotinib. Chem Commun 49:9570–9572CrossRef
14.
Zurück zum Zitat Zhang F-L, Huang Q, Liu J-Y, Huang M-D, Xue J-P (2015) Molecular-target-based anticancer photosensitizer: synthesis and in vitro photodynamic activity of erlotinib–zinc(II) phthalocyanine conjugates. ChemMedChem 10:312–320CrossRef Zhang F-L, Huang Q, Liu J-Y, Huang M-D, Xue J-P (2015) Molecular-target-based anticancer photosensitizer: synthesis and in vitro photodynamic activity of erlotinib–zinc(II) phthalocyanine conjugates. ChemMedChem 10:312–320CrossRef
15.
Zurück zum Zitat Master AM, Rodriguez ME, Kenney ME, Oleinick NL, Gupta AS (2010) Delivery of the photosensitizer Pc 4 in PEG–PCL micelles for in vitro PDT studies. J Pharm Sci 99:2386–2398CrossRef Master AM, Rodriguez ME, Kenney ME, Oleinick NL, Gupta AS (2010) Delivery of the photosensitizer Pc 4 in PEG–PCL micelles for in vitro PDT studies. J Pharm Sci 99:2386–2398CrossRef
16.
Zurück zum Zitat Nombona N, Maduray K, Antunes E, Karsten A, Nyokong T (2012) Synthesis of phthalocyanine conjugates with gold nanoparticles and liposomes for photodynamic therapy. J Photochem Photobiol B 107:35–44CrossRef Nombona N, Maduray K, Antunes E, Karsten A, Nyokong T (2012) Synthesis of phthalocyanine conjugates with gold nanoparticles and liposomes for photodynamic therapy. J Photochem Photobiol B 107:35–44CrossRef
17.
Zurück zum Zitat Jiang B-P, Hu L-F, Shen X-C, Ji S-C, Shi Z, Liu C-J, Zhang L, Liang H (2014) One-step preparation of a water-soluble carbon nanohorn/phthalocyanine hybrid for dual-modality photothermal and photodynamic therapy. ACS Appl Mater Interfaces 6:18008–18017CrossRef Jiang B-P, Hu L-F, Shen X-C, Ji S-C, Shi Z, Liu C-J, Zhang L, Liang H (2014) One-step preparation of a water-soluble carbon nanohorn/phthalocyanine hybrid for dual-modality photothermal and photodynamic therapy. ACS Appl Mater Interfaces 6:18008–18017CrossRef
18.
Zurück zum Zitat Imaz I, Rubio-Martinez M, An J, Sole-Font I, Rosi NL, Maspoch D (2011) Metal-biomolecule frameworks (MBioFs). Chem Commun 47:7287–7302CrossRef Imaz I, Rubio-Martinez M, An J, Sole-Font I, Rosi NL, Maspoch D (2011) Metal-biomolecule frameworks (MBioFs). Chem Commun 47:7287–7302CrossRef
19.
Zurück zum Zitat Rojas S, Devic T, Horcajada P (2017) Metal organic frameworks based on bioactive components. J Mater Chem B 5:2560–2573CrossRef Rojas S, Devic T, Horcajada P (2017) Metal organic frameworks based on bioactive components. J Mater Chem B 5:2560–2573CrossRef
20.
Zurück zum Zitat Yang D, Kang X, Ma PA, Dai Y, Hou Z, Cheng Z, Li C, Lin J (2013) Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery. Biomaterials 34:1601–1612CrossRef Yang D, Kang X, Ma PA, Dai Y, Hou Z, Cheng Z, Li C, Lin J (2013) Hollow structured upconversion luminescent NaYF4:Yb3+, Er3+ nanospheres for cell imaging and targeted anti-cancer drug delivery. Biomaterials 34:1601–1612CrossRef
21.
Zurück zum Zitat Hsu SH, Li CT, Chien HT, Salunkhe RR, Suzuki N, Yamauchi Y, Ho KC, Wu KC (2014) Platinum-free counter electrode comprised of metal-organic-framework (MOF)-derived cobalt sulfide nanoparticles for efficient dye-sensitized solar cells (DSSCs). Sci Rep 4:6983CrossRef Hsu SH, Li CT, Chien HT, Salunkhe RR, Suzuki N, Yamauchi Y, Ho KC, Wu KC (2014) Platinum-free counter electrode comprised of metal-organic-framework (MOF)-derived cobalt sulfide nanoparticles for efficient dye-sensitized solar cells (DSSCs). Sci Rep 4:6983CrossRef
22.
Zurück zum Zitat Sue Y-C, Wu J-W, Chung S-E, Kang C-H, Tung K-L, Wu KCW, Shieh F-K (2014) Synthesis of hierarchical micro/mesoporous structures via solid–aqueous interface growth: zeolitic imidazolate framework-8 on siliceous mesocellular foams for enhanced pervaporation of water/ethanol mixtures. ACS Appl Mater Interfaces 6:5192–5198CrossRef Sue Y-C, Wu J-W, Chung S-E, Kang C-H, Tung K-L, Wu KCW, Shieh F-K (2014) Synthesis of hierarchical micro/mesoporous structures via solid–aqueous interface growth: zeolitic imidazolate framework-8 on siliceous mesocellular foams for enhanced pervaporation of water/ethanol mixtures. ACS Appl Mater Interfaces 6:5192–5198CrossRef
23.
Zurück zum Zitat Shieh FK, Wang SC, Yen CI, Wu CC, Dutta S, Chou LY, Morabito JV, Hu P, Hsu MH, Wu KC, Tsung CK (2015) Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal-organic framework microcrystals. J Am Chem Soc 137:4276–4279CrossRef Shieh FK, Wang SC, Yen CI, Wu CC, Dutta S, Chou LY, Morabito JV, Hu P, Hsu MH, Wu KC, Tsung CK (2015) Imparting functionality to biocatalysts via embedding enzymes into nanoporous materials by a de novo approach: size-selective sheltering of catalase in metal-organic framework microcrystals. J Am Chem Soc 137:4276–4279CrossRef
24.
Zurück zum Zitat Nguyen CV, Liao Y-T, Kang T-C, Chen JE, Yoshikawa T, Nakasaka Y, Masuda T, Wu KCW (2016) A metal-free, high nitrogen-doped nanoporous graphitic carbon catalyst for an effective aerobic HMF-to-FDCA conversion. Green Chem 18:5957–5961CrossRef Nguyen CV, Liao Y-T, Kang T-C, Chen JE, Yoshikawa T, Nakasaka Y, Masuda T, Wu KCW (2016) A metal-free, high nitrogen-doped nanoporous graphitic carbon catalyst for an effective aerobic HMF-to-FDCA conversion. Green Chem 18:5957–5961CrossRef
25.
Zurück zum Zitat Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702CrossRef Broadley MR, White PJ, Hammond JP, Zelko I, Lux A (2007) Zinc in plants. New Phytol 173:677–702CrossRef
26.
Zurück zum Zitat Xu ZC, Yoon J, Spring DR (2010) Fluorescent chemosensors for Zn2+. Chem Soc Rev 39:1996–2006CrossRef Xu ZC, Yoon J, Spring DR (2010) Fluorescent chemosensors for Zn2+. Chem Soc Rev 39:1996–2006CrossRef
27.
Zurück zum Zitat Park KS, Ni Z, Cote AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 103:10186–10191CrossRef Park KS, Ni Z, Cote AP, Choi JY, Huang R, Uribe-Romo FJ, Chae HK, O’Keeffe M, Yaghi OM (2006) Exceptional chemical and thermal stability of zeolitic imidazolate frameworks. Proc Natl Acad Sci USA 103:10186–10191CrossRef
28.
Zurück zum Zitat Mullangi V, Zhou X, Ball DW, Anderson DJ, Miyagi M (2012) Quantitative measurement of the solvent accessibility of histidine imidazole groups in proteins. Biochemistry 51:7202–7208CrossRef Mullangi V, Zhou X, Ball DW, Anderson DJ, Miyagi M (2012) Quantitative measurement of the solvent accessibility of histidine imidazole groups in proteins. Biochemistry 51:7202–7208CrossRef
29.
Zurück zum Zitat Hayashi H, Côté AP, Furukawa H, O’Keeffe M, Yaghi OM (2007) Zeolite a imidazolate frameworks. Nat Mater 6:501–506CrossRef Hayashi H, Côté AP, Furukawa H, O’Keeffe M, Yaghi OM (2007) Zeolite a imidazolate frameworks. Nat Mater 6:501–506CrossRef
30.
Zurück zum Zitat Imaz I, Hernando J, Ruiz-Molina D, Maspoch D (2009) Metal–organic spheres as functional systems for guest encapsulation. Angew Chem Int Ed 48:2325–2329CrossRef Imaz I, Hernando J, Ruiz-Molina D, Maspoch D (2009) Metal–organic spheres as functional systems for guest encapsulation. Angew Chem Int Ed 48:2325–2329CrossRef
31.
Zurück zum Zitat Lu G, Li S, Guo Z, Farha OK, Hauser BG, Qi X, Wang Y, Wang X, Han S, Liu X, DuChene JS, Zhang H, Zhang Q, Chen X, Ma J, Loo SCJ, Wei WD, Yang Y, Hupp JT, Huo F (2012) Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat Chem 4:310–316CrossRef Lu G, Li S, Guo Z, Farha OK, Hauser BG, Qi X, Wang Y, Wang X, Han S, Liu X, DuChene JS, Zhang H, Zhang Q, Chen X, Ma J, Loo SCJ, Wei WD, Yang Y, Hupp JT, Huo F (2012) Imparting functionality to a metal–organic framework material by controlled nanoparticle encapsulation. Nat Chem 4:310–316CrossRef
32.
Zurück zum Zitat Zhang J-P, Zhang Y-B, Lin J-B, Chen X-M (2012) Metal azolate frameworks: from crystal engineering to functional materials. Chem Rev 112:1001–1033CrossRef Zhang J-P, Zhang Y-B, Lin J-B, Chen X-M (2012) Metal azolate frameworks: from crystal engineering to functional materials. Chem Rev 112:1001–1033CrossRef
33.
Zurück zum Zitat Sun C-Y, Qin C, Wang X-L, Yang G-S, Shao K-Z, Lan Y-Q, Su Z-M, Huang P, Wang C-G, Wang E-B (2012) Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans 41:6906–6909CrossRef Sun C-Y, Qin C, Wang X-L, Yang G-S, Shao K-Z, Lan Y-Q, Su Z-M, Huang P, Wang C-G, Wang E-B (2012) Zeolitic imidazolate framework-8 as efficient pH-sensitive drug delivery vehicle. Dalton Trans 41:6906–6909CrossRef
34.
Zurück zum Zitat Ren H, Zhang L, An J, Wang T, Li L, Si X, He L, Wu X, Wang C, Su Z (2014) Polyacrylic acid@zeolitic imidazolate framework-8 nanoparticles with ultrahigh drug loading capability for pH-sensitive drug release. Chem Commun 50:1000–1002CrossRef Ren H, Zhang L, An J, Wang T, Li L, Si X, He L, Wu X, Wang C, Su Z (2014) Polyacrylic acid@zeolitic imidazolate framework-8 nanoparticles with ultrahigh drug loading capability for pH-sensitive drug release. Chem Commun 50:1000–1002CrossRef
35.
Zurück zum Zitat Adhikari C, Das A, Chakraborty A (2015) Zeolitic imidazole framework (zif) nanospheres for easy encapsulation and controlled release of an anticancer drug doxorubicin under different external stimuli: a way toward smart drug delivery system. Mol Pharm 12:3158–3166CrossRef Adhikari C, Das A, Chakraborty A (2015) Zeolitic imidazole framework (zif) nanospheres for easy encapsulation and controlled release of an anticancer drug doxorubicin under different external stimuli: a way toward smart drug delivery system. Mol Pharm 12:3158–3166CrossRef
36.
Zurück zum Zitat Zheng H, Zhang Y, Liu L, Wan W, Guo P, Nyström AM, Zou X (2016) One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J Am Chem Soc 138:962–968CrossRef Zheng H, Zhang Y, Liu L, Wan W, Guo P, Nyström AM, Zou X (2016) One-pot synthesis of metal–organic frameworks with encapsulated target molecules and their applications for controlled drug delivery. J Am Chem Soc 138:962–968CrossRef
37.
Zurück zum Zitat Liédana N, Galve A, Rubio C, Téllez C, Coronas J (2012) CAF@ZIF-8: one-step encapsulation of caffeine in MOF. ACS Appl Mater Interfaces 4:5016–5021CrossRef Liédana N, Galve A, Rubio C, Téllez C, Coronas J (2012) CAF@ZIF-8: one-step encapsulation of caffeine in MOF. ACS Appl Mater Interfaces 4:5016–5021CrossRef
38.
Zurück zum Zitat Zhuang J, Kuo C-H, Chou L-Y, Liu D-Y, Weerapana E, Tsung C-K (2014) Optimized metal–organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano 8:2812–2819CrossRef Zhuang J, Kuo C-H, Chou L-Y, Liu D-Y, Weerapana E, Tsung C-K (2014) Optimized metal–organic-framework nanospheres for drug delivery: evaluation of small-molecule encapsulation. ACS Nano 8:2812–2819CrossRef
39.
Zurück zum Zitat Engin K, Leeper DB, Cater JR, Thistlethwaite AJ, Tupchong L, McFarlane JD (1995) Extracellular pH distribution in human tumours. Int J Hyperth 11:211–216CrossRef Engin K, Leeper DB, Cater JR, Thistlethwaite AJ, Tupchong L, McFarlane JD (1995) Extracellular pH distribution in human tumours. Int J Hyperth 11:211–216CrossRef
40.
Zurück zum Zitat Stubbs M, McSheehy PMJ, Griffiths JR, Bashford CL (2000) Causes and consequences of tumour acidity and implications for treatment. Mol Med Today 6:15–19CrossRef Stubbs M, McSheehy PMJ, Griffiths JR, Bashford CL (2000) Causes and consequences of tumour acidity and implications for treatment. Mol Med Today 6:15–19CrossRef
41.
Zurück zum Zitat Jung J, Lee I-H, Lee E, Park J, Jon S (2007) pH-sensitive polymer nanospheres for use as a potential drug delivery vehicle. Biomacromolecules 8:3401–3407CrossRef Jung J, Lee I-H, Lee E, Park J, Jon S (2007) pH-sensitive polymer nanospheres for use as a potential drug delivery vehicle. Biomacromolecules 8:3401–3407CrossRef
42.
Zurück zum Zitat Zhang M, Gu Z-Y, Bosch M, Perry Z, Zhou H-C (2015) Biomimicry in metal–organic materials. Coord Chem Rev 293:327–356CrossRef Zhang M, Gu Z-Y, Bosch M, Perry Z, Zhou H-C (2015) Biomimicry in metal–organic materials. Coord Chem Rev 293:327–356CrossRef
43.
Zurück zum Zitat Liu J, Yang Y, Zhu W, Yi X, Dong Z, Xu X, Chen M, Yang K, Lu G, Jiang L, Liu Z (2016) Nanoscale metal–organic frameworks for combined photodynamic and radiation therapy in cancer treatment. Biomaterials 97:1–9CrossRef Liu J, Yang Y, Zhu W, Yi X, Dong Z, Xu X, Chen M, Yang K, Lu G, Jiang L, Liu Z (2016) Nanoscale metal–organic frameworks for combined photodynamic and radiation therapy in cancer treatment. Biomaterials 97:1–9CrossRef
44.
Zurück zum Zitat Lismont M, Dreesen L, Wuttke S (2017) Metal–organic framework nanoparticles in photodynamic therapy: current status and perspectives Adv Funct Mater 27:1606314-n/a Lismont M, Dreesen L, Wuttke S (2017) Metal–organic framework nanoparticles in photodynamic therapy: current status and perspectives Adv Funct Mater 27:1606314-n/a
45.
Zurück zum Zitat Yanes RE, Tamanoi F (2012) Development of mesoporous silica nanomaterials as a vehicle for anticancer drug delivery. Ther Deliv 3:389–404CrossRef Yanes RE, Tamanoi F (2012) Development of mesoporous silica nanomaterials as a vehicle for anticancer drug delivery. Ther Deliv 3:389–404CrossRef
46.
Zurück zum Zitat Horcajada P, Serre C, Vallet-Regí M, Sebban M, Taulelle F, Férey G (2006) Metal–organic frameworks as efficient materials for drug delivery. Angew Chem Int Ed 45:5974–5978CrossRef Horcajada P, Serre C, Vallet-Regí M, Sebban M, Taulelle F, Férey G (2006) Metal–organic frameworks as efficient materials for drug delivery. Angew Chem Int Ed 45:5974–5978CrossRef
47.
Zurück zum Zitat di Nunzio MR, Agostoni V, Cohen B, Gref R, Douhal A (2014) A “ship in a bottle” strategy to load a hydrophilic anticancer drug in porous metal organic framework nanoparticles: efficient encapsulation, matrix stabilization, and photodelivery. J Med Chem 57:411–420CrossRef di Nunzio MR, Agostoni V, Cohen B, Gref R, Douhal A (2014) A “ship in a bottle” strategy to load a hydrophilic anticancer drug in porous metal organic framework nanoparticles: efficient encapsulation, matrix stabilization, and photodelivery. J Med Chem 57:411–420CrossRef
48.
Zurück zum Zitat Pan Y, Heryadi D, Zhou F, Zhao L, Lestari G, Su H, Lai Z (2011) Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm 13:6937–6940CrossRef Pan Y, Heryadi D, Zhou F, Zhao L, Lestari G, Su H, Lai Z (2011) Tuning the crystal morphology and size of zeolitic imidazolate framework-8 in aqueous solution by surfactants. CrystEngComm 13:6937–6940CrossRef
49.
Zurück zum Zitat Hu P, Zhuang J, Chou LY, Lee HK, Ling XY, Chuang YC, Tsung CK (2014) Surfactant-directed atomic to mesoscale alignment: metal nanocrystals encased individually in single-crystalline porous nanostructures. J Am Chem Soc 136:10561–10564CrossRef Hu P, Zhuang J, Chou LY, Lee HK, Ling XY, Chuang YC, Tsung CK (2014) Surfactant-directed atomic to mesoscale alignment: metal nanocrystals encased individually in single-crystalline porous nanostructures. J Am Chem Soc 136:10561–10564CrossRef
50.
Zurück zum Zitat Maree MD, Kuznetsova N, Nyokong T (2001) Silicon octaphenoxyphthalocyanines: photostability and singlet oxygen quantum yields. J Photochem Photobiol A 140:117–125CrossRef Maree MD, Kuznetsova N, Nyokong T (2001) Silicon octaphenoxyphthalocyanines: photostability and singlet oxygen quantum yields. J Photochem Photobiol A 140:117–125CrossRef
51.
Zurück zum Zitat Della Rocca J, Liu D, Lin W (2011) Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 44:957–968CrossRef Della Rocca J, Liu D, Lin W (2011) Nanoscale metal–organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 44:957–968CrossRef
52.
Zurück zum Zitat Xing L, Zheng H, Cao Y, Che S (2012) coordination polymer coated mesoporous silica nanoparticles for pH-responsive drug release. Adv Mater 24:6433–6437CrossRef Xing L, Zheng H, Cao Y, Che S (2012) coordination polymer coated mesoporous silica nanoparticles for pH-responsive drug release. Adv Mater 24:6433–6437CrossRef
53.
Zurück zum Zitat Mindell JA (2012) Lysosomal acidification mechanisms. Annu Rev Physiol 74:69–86CrossRef Mindell JA (2012) Lysosomal acidification mechanisms. Annu Rev Physiol 74:69–86CrossRef
Metadaten
Titel
Zeolitic imidazolate metal organic framework-8 as an efficient pH-controlled delivery vehicle for zinc phthalocyanine in photodynamic therapy
verfasst von
Mei-Ru Song
Dong-Yao Li
Fu-Yu Nian
Jin-Ping Xue
Juan-Juan Chen
Publikationsdatum
16.10.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 4/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1716-z

Weitere Artikel der Ausgabe 4/2018

Journal of Materials Science 4/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.