Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 11/2016

01.07.2016

Zinc oxide incorporating iron nanoparticles with improved conductance and capacitance properties

verfasst von: N. Bouazizi, F. Ajala, M. Khelil, H. Lachheb, K. Khirouni, A. Houas, A. Azzouz

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 11/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Iron nanoparticles were incorporated into zinc oxide powders by an in situ dispersion method. The products were fully characterized by X-ray diffractometry, diffuse reflectance, FTIR spectrophotometry and complex impedance spectroscopy. The XRD patterns agreed with that of the ZnO typical wurtzite structure, the sharp diffraction peaks indicating good crystallinity of ZnO and ZnO-Fe nanoparticles. The average particle size determined by the Scherrer equation showed an increase from 20 to 25 nm for ZnO and ZnO-Fe respectively. The UV peak positions of the modified samples shifted to a longer wavelength compared to pure ZnO, providing evidence of changes in the acceptor level induced by iron nanoparticles. The optical band gap of the samples was found to be 3.14 eV for ZnO and 3.04 eV for ZnO-Fe. The electrical properties were investigated between 273 and 413 K, at several frequencies. Besides, a detailed analysis of the impedance spectrum showed an appreciable improvement of the conductivity due to the addition of iron nanoparticles. The incorporation of Fe-NPs appears to be responsible for conductance variations, charge transfer and capacitance improvement. The above properties make these materials to be regarded as very promising electrode materials for high-efficiency energy storage.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K.H. Kim, Z. Jin, Y. Abe, M. Kawamura, Effect of Li and Cu dopants on structural properties of zinc oxide nanorods. Superlattice Microstruct. 77, 101–107 (2015)CrossRef K.H. Kim, Z. Jin, Y. Abe, M. Kawamura, Effect of Li and Cu dopants on structural properties of zinc oxide nanorods. Superlattice Microstruct. 77, 101–107 (2015)CrossRef
2.
Zurück zum Zitat C.E. Benouis, M. Benhaliliba, A. Sanchez Juarez, M.S. Aida, F. Chami, F. Yakuphanoglu, The effect of indium doping on structural, electrical conductivity, photoconductivity and density of states properties of ZnO films. J. Alloys Compd. 490, 62–67 (2010)CrossRef C.E. Benouis, M. Benhaliliba, A. Sanchez Juarez, M.S. Aida, F. Chami, F. Yakuphanoglu, The effect of indium doping on structural, electrical conductivity, photoconductivity and density of states properties of ZnO films. J. Alloys Compd. 490, 62–67 (2010)CrossRef
3.
Zurück zum Zitat K.H. Kim, T. Umakoshi, Y. Abe, M. Kawamura, T. Kiba, Growth behavior of Al-doped zinc oxide microrods with times. Superlattices Microstruct. 85, 743–746 (2015)CrossRef K.H. Kim, T. Umakoshi, Y. Abe, M. Kawamura, T. Kiba, Growth behavior of Al-doped zinc oxide microrods with times. Superlattices Microstruct. 85, 743–746 (2015)CrossRef
4.
Zurück zum Zitat K.H. Kim, T. Umakoshi, Y. Abe, M. Kawamura, T. Kiba, Determination of effective growth time for zinc oxide nanorods using chemical solution deposition. Superlattices Microstruct. 88, 150–153 (2015)CrossRef K.H. Kim, T. Umakoshi, Y. Abe, M. Kawamura, T. Kiba, Determination of effective growth time for zinc oxide nanorods using chemical solution deposition. Superlattices Microstruct. 88, 150–153 (2015)CrossRef
5.
Zurück zum Zitat B.C. Yadav, R. Srivastava, C.D. Dwivedi, P. Pramanik, Moisture sensor based on ZnO nanomaterial synthesized through oxalate route. Sens. Actuators B: Chemical 131, 216–222 (2008)CrossRef B.C. Yadav, R. Srivastava, C.D. Dwivedi, P. Pramanik, Moisture sensor based on ZnO nanomaterial synthesized through oxalate route. Sens. Actuators B: Chemical 131, 216–222 (2008)CrossRef
6.
Zurück zum Zitat C. Shang, A. Barnabe, Structural study and phase transition investigation in a simple synthesis of porous architected-ZnO nanopowder. Mater. Charact. 86, 206–211 (2013)CrossRef C. Shang, A. Barnabe, Structural study and phase transition investigation in a simple synthesis of porous architected-ZnO nanopowder. Mater. Charact. 86, 206–211 (2013)CrossRef
7.
Zurück zum Zitat S. Erten-Ela, S. Cogal, S. Icli, Conventional and microwave-assisted synthesis of ZnO nanorods and effects of PEG400 as a surfactant on the morphology. Inorg. Chim. Acta 362, 1855–1858 (2009)CrossRef S. Erten-Ela, S. Cogal, S. Icli, Conventional and microwave-assisted synthesis of ZnO nanorods and effects of PEG400 as a surfactant on the morphology. Inorg. Chim. Acta 362, 1855–1858 (2009)CrossRef
8.
Zurück zum Zitat Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter 16, 829–858 (2004) Z.L. Wang, Zinc oxide nanostructures: growth, properties and applications. J. Phys.: Condens. Matter 16, 829–858 (2004)
9.
Zurück zum Zitat S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4(11), 1013–1098 (2011)CrossRef S. Xu, Z.L. Wang, One-dimensional ZnO nanostructures: solution growth and functional properties. Nano Res. 4(11), 1013–1098 (2011)CrossRef
10.
Zurück zum Zitat D.L. Raimondi, E. Kay, High resistivity transparent ZnO thin films. J. Vac. Sci. Technol. 1, 96–99 (1970)CrossRef D.L. Raimondi, E. Kay, High resistivity transparent ZnO thin films. J. Vac. Sci. Technol. 1, 96–99 (1970)CrossRef
11.
Zurück zum Zitat Z. Hu, G. Oskam, P.C. Searson, Influence of solvent on the growth of ZnO nanoparticles. J. Colloid Interface Sci. 263, 454 (2003)CrossRef Z. Hu, G. Oskam, P.C. Searson, Influence of solvent on the growth of ZnO nanoparticles. J. Colloid Interface Sci. 263, 454 (2003)CrossRef
12.
Zurück zum Zitat B. Liu, H.C. Zeng, Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. Langmuir 20, 4196 (2004)CrossRef B. Liu, H.C. Zeng, Room temperature solution synthesis of monodispersed single-crystalline ZnO nanorods and derived hierarchical nanostructures. Langmuir 20, 4196 (2004)CrossRef
13.
Zurück zum Zitat N. Bouazizi, F. Ajala, A. Bettaibi, M. Khelil, A. Benghnia, R. Bargougui, S. Louhichi, L. Labiadh, R.B. Slama, B. Chaouachi, K. Khirouni, A. Houas, A. Azzouz, Metal-organo-zinc oxide materials: investigation on the structural, optical and electrical properties. J. Alloys Compd. 25, 146–153 (2016)CrossRef N. Bouazizi, F. Ajala, A. Bettaibi, M. Khelil, A. Benghnia, R. Bargougui, S. Louhichi, L. Labiadh, R.B. Slama, B. Chaouachi, K. Khirouni, A. Houas, A. Azzouz, Metal-organo-zinc oxide materials: investigation on the structural, optical and electrical properties. J. Alloys Compd. 25, 146–153 (2016)CrossRef
14.
Zurück zum Zitat M.N. Rumyantseva, E.A. Makeeva, A.M. Gaskov, Influence of the microstructure of semiconductor sensor materials on oxygen chemisorption on their surface. Russ. J. Gen. Chem. 78, 2556–2565 (2008)CrossRef M.N. Rumyantseva, E.A. Makeeva, A.M. Gaskov, Influence of the microstructure of semiconductor sensor materials on oxygen chemisorption on their surface. Russ. J. Gen. Chem. 78, 2556–2565 (2008)CrossRef
15.
Zurück zum Zitat Y. Bu, Z. Chen, W. Li, B. Hou, Highly efficient photocatalytic performance of graphene-ZnO quasi-shell-core composite material. ACS Appl. Mater. Interfaces 5, 12361 (2013)CrossRef Y. Bu, Z. Chen, W. Li, B. Hou, Highly efficient photocatalytic performance of graphene-ZnO quasi-shell-core composite material. ACS Appl. Mater. Interfaces 5, 12361 (2013)CrossRef
16.
Zurück zum Zitat L.H. Van, M.H. Hong, J. Ding, Structural and magnetic property of Co-doped-ZnO thin films prepared by pulsed laser deposition. J. Alloys Compd. 449, 207 (2008)CrossRef L.H. Van, M.H. Hong, J. Ding, Structural and magnetic property of Co-doped-ZnO thin films prepared by pulsed laser deposition. J. Alloys Compd. 449, 207 (2008)CrossRef
17.
Zurück zum Zitat N. Bouazizi, R. Bargougui, T. Boudharaa, M. Khelil, A. Benghnia, L. Labiadh, R.B. Slama, B. Chaouachi, S. Ammar, A. Azzouz, Synthesis and characterization of SnO2 HMD-Fe materials with improved electric properties and affinity towards hydrogen. Ceram. Int. 42, 9413–9418 (2016)CrossRef N. Bouazizi, R. Bargougui, T. Boudharaa, M. Khelil, A. Benghnia, L. Labiadh, R.B. Slama, B. Chaouachi, S. Ammar, A. Azzouz, Synthesis and characterization of SnO2 HMD-Fe materials with improved electric properties and affinity towards hydrogen. Ceram. Int. 42, 9413–9418 (2016)CrossRef
18.
Zurück zum Zitat R. Bargougui, N. Bouazizi, W.B. Soltan, A. Gadri, A. Azzouz, S. Ammar, Controlled synthesis and electrical conduction properties of anatase TiO2 nanoparticles via the polyol method. Appl. Phys. A 122, 1–10 (2016)CrossRef R. Bargougui, N. Bouazizi, W.B. Soltan, A. Gadri, A. Azzouz, S. Ammar, Controlled synthesis and electrical conduction properties of anatase TiO2 nanoparticles via the polyol method. Appl. Phys. A 122, 1–10 (2016)CrossRef
19.
Zurück zum Zitat K.J. Chen, F.Y. Hung, S.J. Chang, S.J. Young, Optoelectronic characteristics of UV photodetector based on ZnO nanowire thin films. J. Alloys Compd. 479, 674 (2009)CrossRef K.J. Chen, F.Y. Hung, S.J. Chang, S.J. Young, Optoelectronic characteristics of UV photodetector based on ZnO nanowire thin films. J. Alloys Compd. 479, 674 (2009)CrossRef
20.
Zurück zum Zitat F. Yakuphanoglu, Electrical and photovoltaic properties of cobalt doped zinc oxide nanofiber/n-silicon diode. J. Alloys Compd. 494, 451 (2010)CrossRef F. Yakuphanoglu, Electrical and photovoltaic properties of cobalt doped zinc oxide nanofiber/n-silicon diode. J. Alloys Compd. 494, 451 (2010)CrossRef
21.
Zurück zum Zitat R. Lamba, A. Umar, S.K. Mehta, S.K. Kansal, CeO2 ZnO hexagonal nanodisks: efficient material for the degradation of direct blue 15 dye and its simulated dye bath effluent under solar light. J. Alloys Compds. 620, 67–73 (2015)CrossRef R. Lamba, A. Umar, S.K. Mehta, S.K. Kansal, CeO2 ZnO hexagonal nanodisks: efficient material for the degradation of direct blue 15 dye and its simulated dye bath effluent under solar light. J. Alloys Compds. 620, 67–73 (2015)CrossRef
22.
Zurück zum Zitat J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8, 569 (1972)CrossRef J. Tauc, A. Menth, States in the gap. J. Non-Cryst. Solids 8, 569 (1972)CrossRef
23.
Zurück zum Zitat S.A. Khayyat, M.S. Akhtar, A. Umar, ZnO nanocapsules for photocatalytic degradation of thionine, ZnO nanocapsules for photocatalytic degradation of thionine. Mater. Lett. 81, 239–241 (2012)CrossRef S.A. Khayyat, M.S. Akhtar, A. Umar, ZnO nanocapsules for photocatalytic degradation of thionine, ZnO nanocapsules for photocatalytic degradation of thionine. Mater. Lett. 81, 239–241 (2012)CrossRef
24.
Zurück zum Zitat M. Ram, Synthesis and electrical properties of (LiCo3/5 Fe1/5 Mn1/5) VO4 ceramics. Solid State Sci. 12, 350–354 (2010)CrossRef M. Ram, Synthesis and electrical properties of (LiCo3/5 Fe1/5 Mn1/5) VO4 ceramics. Solid State Sci. 12, 350–354 (2010)CrossRef
25.
Zurück zum Zitat N. Bouazizi, R. Bargougui, A. Oueslati, R. Benslama, Effect of synthesis time on structural, optical and electrical properties of CuO nanoparticles synthesized by reflux condensation method. Adv. Mater. Lett. 6, 158–164 (2015)CrossRef N. Bouazizi, R. Bargougui, A. Oueslati, R. Benslama, Effect of synthesis time on structural, optical and electrical properties of CuO nanoparticles synthesized by reflux condensation method. Adv. Mater. Lett. 6, 158–164 (2015)CrossRef
26.
Zurück zum Zitat N. Bouazizi, R. Ouargli, S. Nousir, R. Benslama, A. Azzouz, Properties of SBA-15 modified by iron nanoparticles as potential hydrogen adsorbents and sensors. J. Phys. Chem. Solid 77, 172–177 (2015)CrossRef N. Bouazizi, R. Ouargli, S. Nousir, R. Benslama, A. Azzouz, Properties of SBA-15 modified by iron nanoparticles as potential hydrogen adsorbents and sensors. J. Phys. Chem. Solid 77, 172–177 (2015)CrossRef
27.
Zurück zum Zitat B.N. Parida, P.R. Das, R. Padhee, R.N.P. Choudhary, Ferroelectric and pyroelectric properties of rare earth based tungsten–bronze compounds. J. Mater. Sci.: Mater. Electron. 3, 0744 (2012) B.N. Parida, P.R. Das, R. Padhee, R.N.P. Choudhary, Ferroelectric and pyroelectric properties of rare earth based tungsten–bronze compounds. J. Mater. Sci.: Mater. Electron. 3, 0744 (2012)
28.
Zurück zum Zitat R. Bargougui, A. Oueslati, G. Schmerber, C. Ulhaq-Bouillet, S. Colis, F. Hlel, S. Ammar, A. Dinia, Structural, optical and electrical properties of Zn-doped SnO2 nanoparticles synthesized by the co-precipitation technique. J. Mater. Sci.: Mater. Electron. 25, 2066–2071 (2014) R. Bargougui, A. Oueslati, G. Schmerber, C. Ulhaq-Bouillet, S. Colis, F. Hlel, S. Ammar, A. Dinia, Structural, optical and electrical properties of Zn-doped SnO2 nanoparticles synthesized by the co-precipitation technique. J. Mater. Sci.: Mater. Electron. 25, 2066–2071 (2014)
29.
Zurück zum Zitat W.A. England, M.G. Cross, A. Hamnent, P.J. Wiseman, J.B. Goodenough, Fast proton conduction in inorganic ion-exchange compounds. J. Solid State Ion. 1, 231 (1980)CrossRef W.A. England, M.G. Cross, A. Hamnent, P.J. Wiseman, J.B. Goodenough, Fast proton conduction in inorganic ion-exchange compounds. J. Solid State Ion. 1, 231 (1980)CrossRef
30.
Zurück zum Zitat T. Nagata, T. Shimura, A. Ashida, N. Fujimura, T. Ito, Electro-optic property of ZnO: X (X = Li, Mg) thin films. J. Cryst. Growth 237–239, 533–537 (2002)CrossRef T. Nagata, T. Shimura, A. Ashida, N. Fujimura, T. Ito, Electro-optic property of ZnO: X (X = Li, Mg) thin films. J. Cryst. Growth 237–239, 533–537 (2002)CrossRef
31.
Zurück zum Zitat C.K. Maiti, S.K. Samanta, G.K. Dalapati, S.K. Nandi, S. Chatterjee, Electrical characterization of TiO2 gate oxides on strained-Si. J Microelectron. Eng. 72, 253 (2004)CrossRef C.K. Maiti, S.K. Samanta, G.K. Dalapati, S.K. Nandi, S. Chatterjee, Electrical characterization of TiO2 gate oxides on strained-Si. J Microelectron. Eng. 72, 253 (2004)CrossRef
32.
Zurück zum Zitat K.K. Saini, S.D. Sharma, C. Kanth, M. Kar, D. Singh, C.P. Sharma, Structural and optical properties of TiO2 thin films derived by sol–gel dip coating process. J. Non-Cryst. Solids 353, 2469 (2007)CrossRef K.K. Saini, S.D. Sharma, C. Kanth, M. Kar, D. Singh, C.P. Sharma, Structural and optical properties of TiO2 thin films derived by sol–gel dip coating process. J. Non-Cryst. Solids 353, 2469 (2007)CrossRef
Metadaten
Titel
Zinc oxide incorporating iron nanoparticles with improved conductance and capacitance properties
verfasst von
N. Bouazizi
F. Ajala
M. Khelil
H. Lachheb
K. Khirouni
A. Houas
A. Azzouz
Publikationsdatum
01.07.2016
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 11/2016
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-016-5235-5

Weitere Artikel der Ausgabe 11/2016

Journal of Materials Science: Materials in Electronics 11/2016 Zur Ausgabe

Neuer Inhalt