Skip to main content

2020 | OriginalPaper | Buchkapitel

ZnO-Based Quantum Structures for Terahertz Sources

verfasst von : V. P. Sirkeli, H. L. Hartnagel, O. Yilmazoglu, S. Preu

Erschienen in: 4th International Conference on Nanotechnologies and Biomedical Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we report on the numerical study of the terahertz devices based on metal oxide semiconductors and its application in biology and medicine. We also report on the recent progress of the theoretical and experimental studies of ZnO-based THz quantum cascade lasers (QCLs) and resonant tunneling diodes (RTDs). We show that ZnO-based semiconductor compounds are promising materials for fabrication terahertz sources operating up to room temperature due to their unique properties such as large bandgap and conduction band offset (CBO) energy, high LO-phonon energy, and high resistant to the high breakdown electric field. Moreover, it was established that the ZnO-based terahertz sources can cover the spectral region of 5–12 THz, which is very important for THz imaging and detection of explosive materials, and which could be not covered by conventional GaAs-based terahertz devices. In terms of the reported significant progress in growth of non-polar m-plane ZnO-based heterostructures and devices with low density defects, it is open a wide perspective towards design and fabrication of non-polar m-plane ZnO-based high power terahertz sources with capabilities of operation at room temperature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Belkin, M.A., Capasso, F.: New frontiers in quantum cascade lasers: high performance room temperature terahertz sources. Phys. Scr. 90, 118002 (2015)CrossRef Belkin, M.A., Capasso, F.: New frontiers in quantum cascade lasers: high performance room temperature terahertz sources. Phys. Scr. 90, 118002 (2015)CrossRef
2.
Zurück zum Zitat Leahy-Hoppa, M.R., Fitch, M.J., et al.: Wideband terahertz spectroscopy of explosives. Chem. Phys. Lett. 434, 227–230 (2007)CrossRef Leahy-Hoppa, M.R., Fitch, M.J., et al.: Wideband terahertz spectroscopy of explosives. Chem. Phys. Lett. 434, 227–230 (2007)CrossRef
3.
Zurück zum Zitat Liu, H.B., Zhong, H., et al.: Terahertz spectroscopy and imaging for defense and security applications. Proc. IEEE 95, 1514–1527 (2007)CrossRef Liu, H.B., Zhong, H., et al.: Terahertz spectroscopy and imaging for defense and security applications. Proc. IEEE 95, 1514–1527 (2007)CrossRef
4.
Zurück zum Zitat Choi, K., Hong, T., et al.: Reflection terahertz time-domain spectroscopy of RDX and HMX explosives. J. Appl. Phys. 115, 023105 (2014)CrossRef Choi, K., Hong, T., et al.: Reflection terahertz time-domain spectroscopy of RDX and HMX explosives. J. Appl. Phys. 115, 023105 (2014)CrossRef
5.
Zurück zum Zitat Scarfi, M.R., Roman, M., et al.: THz exposure of whole blood for the study of biological effects on human lymphocytes. J. Biol. Phys. 29, 171–177 (2003)CrossRef Scarfi, M.R., Roman, M., et al.: THz exposure of whole blood for the study of biological effects on human lymphocytes. J. Biol. Phys. 29, 171–177 (2003)CrossRef
6.
Zurück zum Zitat Clothier, R.H., Bourne, N.: Effects of THz exposure on human primary keratinocyte differentiation and viability. J. Biol. Phys. 29, 179–185 (2003)CrossRef Clothier, R.H., Bourne, N.: Effects of THz exposure on human primary keratinocyte differentiation and viability. J. Biol. Phys. 29, 179–185 (2003)CrossRef
7.
Zurück zum Zitat Köhler, R., Tredicucci, A., et al.: Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002)CrossRef Köhler, R., Tredicucci, A., et al.: Terahertz semiconductor-heterostructure laser. Nature 417, 156–159 (2002)CrossRef
8.
Zurück zum Zitat Fathololoumi, S., Dupont, E., et al.: Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling. Opt. Express 20, 3866–3876 (2012)CrossRef Fathololoumi, S., Dupont, E., et al.: Terahertz quantum cascade lasers operating up to ~200 K with optimized oscillator strength and improved injection tunneling. Opt. Express 20, 3866–3876 (2012)CrossRef
9.
Zurück zum Zitat Bellotti, E., Driscoll, K., Moustakas, T.D., Paiella, R.: Monte Carlo simulation of terahertz quantum cascade laser structures based on wide-bandgap semiconductors. J. Appl. Phys. 105, 113103 (2009)CrossRef Bellotti, E., Driscoll, K., Moustakas, T.D., Paiella, R.: Monte Carlo simulation of terahertz quantum cascade laser structures based on wide-bandgap semiconductors. J. Appl. Phys. 105, 113103 (2009)CrossRef
13.
Zurück zum Zitat Sirkeli, V.P., Yilmazoglu, O., Küppers, F., Hartnagel, H.L.: 2.08 THz and 4.96 THz room-temperature quantum cascade lasers based on non-polar M-plane ZnMgO/ZnO. In: Proceedings of the 43rd International Conference on Infrared, Millimeter and Terahertz Waves, IRMMW-THz 2018, Nagoya, Japan, 2018, pp. 1–2 (2018). https://doi.org/10.1109/irmmw-thz.2018.8510344 Sirkeli, V.P., Yilmazoglu, O., Küppers, F., Hartnagel, H.L.: 2.08 THz and 4.96 THz room-temperature quantum cascade lasers based on non-polar M-plane ZnMgO/ZnO. In: Proceedings of the 43rd International Conference on Infrared, Millimeter and Terahertz Waves, IRMMW-THz 2018, Nagoya, Japan, 2018, pp. 1–2 (2018). https://​doi.​org/​10.​1109/​irmmw-thz.​2018.​8510344
15.
Zurück zum Zitat Maekawa, T., Kanaya, H., Suzuki, S., Asada, M.: Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss. Appl. Phys. Express 9, 024101 (2016)CrossRef Maekawa, T., Kanaya, H., Suzuki, S., Asada, M.: Oscillation up to 1.92 THz in resonant tunneling diode by reduced conduction loss. Appl. Phys. Express 9, 024101 (2016)CrossRef
16.
Zurück zum Zitat Sirkeli, V.P., Vatavu, S., Yilmazoglu, O., Preu, S., Hartnagel, H.L.: Negative differential resistance in ZnO-based resonant tunneling diodes. In: Proceedings of the 44th International Conference on Infrared, Millimeter and Terahertz Waves, IRMMW-THz 2019, Paris, France, 2019 (in press) Sirkeli, V.P., Vatavu, S., Yilmazoglu, O., Preu, S., Hartnagel, H.L.: Negative differential resistance in ZnO-based resonant tunneling diodes. In: Proceedings of the 44th International Conference on Infrared, Millimeter and Terahertz Waves, IRMMW-THz 2019, Paris, France, 2019 (in press)
17.
Zurück zum Zitat Greck, P., Birner, S., Huber, B., Vogl, P.: Efficient method for the calculation of dissipative quantum transport in quantum cascade lasers. Opt. Express 23, 6587–6600 (2015)CrossRef Greck, P., Birner, S., Huber, B., Vogl, P.: Efficient method for the calculation of dissipative quantum transport in quantum cascade lasers. Opt. Express 23, 6587–6600 (2015)CrossRef
21.
Zurück zum Zitat Adachi, S.: Properties of Semiconductor Alloys: Group—IV, III–V and II–VI Semiconductors. Wiley, Berlin (2009)CrossRef Adachi, S.: Properties of Semiconductor Alloys: Group—IV, III–V and II–VI Semiconductors. Wiley, Berlin (2009)CrossRef
Metadaten
Titel
ZnO-Based Quantum Structures for Terahertz Sources
verfasst von
V. P. Sirkeli
H. L. Hartnagel
O. Yilmazoglu
S. Preu
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-31866-6_44

Neuer Inhalt