Skip to main content

2020 | OriginalPaper | Buchkapitel

Surface Modification of PVDF Copolymer Nanofiber by Chitosan/Ag(NP)/Nanosilica Composite

verfasst von : M. Nasir, R. I. Sugatri, D. M. Agustini

Erschienen in: 4th International Conference on Nanotechnologies and Biomedical Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

PVDF copolymer nanofiber showed good chemical, mechanical and high hydrophobicity properties. PVDF copolymer nanofiber can be modified and functionalized by introducing hydrophilic and antibacterial materials such as chitosan composite. In this work, PVDF copolymer nanofiber with an average diameter 427.00 nm was modified by dip-coating process by using mixture of chitosan/Ag(NP)/nanosilica. Chitosan/Ag(NP)/nanosilica/PVDF copolymer nanofiber composite was successfully synthesized after analysis and confirmed by using ATR-FTIR spectroscopy, scanning electron microscopy (SEM), water contact angle and water spreading time analysis. SEM analysis showed the diameter of chitosan/Ag(NP)/nanosilica/PVDF copolymer nanofiber has an average diameter 443.50 nm. Post dip coating, it was found the specific vibration band peak IR spectrum which identify the presence of chitosan, SiO2, and the shifting band peak which was caused by interaction between chitosan and Ag0 in nanofiber composite. Chitosan/Ag(NP)/nanosilica/PVDF copolymer nanofiber composite with different content of nanosilica have lower water contact angle than pristine PVDF copolymer nanofiber. Water contact angle of PVDF copolymer nanofiber, chitosan/Ag(NP)/nanosilica (0.05%)/PVDF copolymer nanofiber and chitosan/Ag(NP)/nanosilica (0.20%)/PVDF copolymer nanofiber were 108°, 60° and 77°, respectively. Water spreading time analysis showed that modified PVDF copolymer has faster water spreading time than pristine PVDF copolymer nanofiber. It meant modification of PVDF copolymer nanofiber by chitosan/Ag(NP)/nanosilica gave hydrophilic and antibacterial properties to nanofiber.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Yuan, J., Geng, J., Xing, Z., Shen, J., Kang, I.K., Byun, H.: Electrospinning of antibacterial poly(vinylidene fluoride) nanofibers containing silver nanoparticles. J. Appl. Polym. Sci. 116, 668–672 (2010) Yuan, J., Geng, J., Xing, Z., Shen, J., Kang, I.K., Byun, H.: Electrospinning of antibacterial poly(vinylidene fluoride) nanofibers containing silver nanoparticles. J. Appl. Polym. Sci. 116, 668–672 (2010)
2.
Zurück zum Zitat Sethupathy, M., Sethuraman, V., Manisankar, P.: Preparation of PVDF/SiO2 composite nanofiber membrane using electrospinning for polymer electrolyte analysis. Soft Nanosci. Lett. 3, 37–43 (2013)CrossRef Sethupathy, M., Sethuraman, V., Manisankar, P.: Preparation of PVDF/SiO2 composite nanofiber membrane using electrospinning for polymer electrolyte analysis. Soft Nanosci. Lett. 3, 37–43 (2013)CrossRef
3.
Zurück zum Zitat Fontananova, E., Bahattab, M.A., Aljlil, S.A., Alowairdy, M., Rinaldi, G., Vuono, D., Nagy, J.B., Drioli, E., Profio, G.: From hydrophobic to hydrophilic polyvinylidenefluoride (PVDF) membranes by gaining new insights into material’s properties. RSC (2015). https://doi.org/10.1039/C5RA08388ECrossRef Fontananova, E., Bahattab, M.A., Aljlil, S.A., Alowairdy, M., Rinaldi, G., Vuono, D., Nagy, J.B., Drioli, E., Profio, G.: From hydrophobic to hydrophilic polyvinylidenefluoride (PVDF) membranes by gaining new insights into material’s properties. RSC (2015). https://​doi.​org/​10.​1039/​C5RA08388ECrossRef
4.
Zurück zum Zitat Sheikh, F.A., Zargar, M.A., Tamboli, A.H., Kim, H.: A super hydrophilic modification of Poly(vinylidene fluoride) (PVDF) nanofibers: By in situ hydrothermal approach. Appl. Surf. Sci. 365, 417–425 (2016)CrossRef Sheikh, F.A., Zargar, M.A., Tamboli, A.H., Kim, H.: A super hydrophilic modification of Poly(vinylidene fluoride) (PVDF) nanofibers: By in situ hydrothermal approach. Appl. Surf. Sci. 365, 417–425 (2016)CrossRef
5.
Zurück zum Zitat Peng, L., Lei, W., Yu, P., Luo, Y.: Polyvinylidene fluoride (PVDF)/hydrophobic nano-silica (H-SiO2) coated superhydrophobic porous materials for water/oil separation. RSC Adv. 6, 10365–10371 (2016)CrossRef Peng, L., Lei, W., Yu, P., Luo, Y.: Polyvinylidene fluoride (PVDF)/hydrophobic nano-silica (H-SiO2) coated superhydrophobic porous materials for water/oil separation. RSC Adv. 6, 10365–10371 (2016)CrossRef
6.
Zurück zum Zitat Kang, G.D., Cao, Y.M.: Application and modifiction of poly(vinylidene fluoride) (PVDF) membranes—a review. J. Membr. Sci. 463, 145–165 (2014)CrossRef Kang, G.D., Cao, Y.M.: Application and modifiction of poly(vinylidene fluoride) (PVDF) membranes—a review. J. Membr. Sci. 463, 145–165 (2014)CrossRef
7.
8.
Zurück zum Zitat Boributh, S., Chanachai, A., Jiraratananon, R.: Modification of PVDF membrane by chitosan solution for reducing protein fouling. J. Membr. Sci. 342, 97–104 (2009)CrossRef Boributh, S., Chanachai, A., Jiraratananon, R.: Modification of PVDF membrane by chitosan solution for reducing protein fouling. J. Membr. Sci. 342, 97–104 (2009)CrossRef
9.
Zurück zum Zitat Chanachai, A., Meksup, K., Jiraratananon, R.: Coating of hydrophobic hollow fiber PVDF membrane with chitosan for protection against wetting and falvor loss in osmotic distillation process. Sep. Purif. Technol. 72, 217–224 (2010)CrossRef Chanachai, A., Meksup, K., Jiraratananon, R.: Coating of hydrophobic hollow fiber PVDF membrane with chitosan for protection against wetting and falvor loss in osmotic distillation process. Sep. Purif. Technol. 72, 217–224 (2010)CrossRef
10.
Zurück zum Zitat Rhazi, M., Desbrieres, A., Tolaimate, A., Alagui, A., Vottero, P.: Investigation of different natural sources of chitin: influence of the source and deacetylation process on the physicochemical characteristics of chitosan. Polym. Int. 49, 337–344 (2000)CrossRef Rhazi, M., Desbrieres, A., Tolaimate, A., Alagui, A., Vottero, P.: Investigation of different natural sources of chitin: influence of the source and deacetylation process on the physicochemical characteristics of chitosan. Polym. Int. 49, 337–344 (2000)CrossRef
11.
Zurück zum Zitat Prabhu, S., Poulose, E.K.: Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2, 1–10 (2012)CrossRef Prabhu, S., Poulose, E.K.: Silver nanoparticles: mechanism of antimicrobial action, synthesis, medical applications, and toxicity effects. Int. Nano Lett. 2, 1–10 (2012)CrossRef
12.
Zurück zum Zitat Abdelgawad, A.M., Hudson, S.M., Rojas, O.J.: Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr. Polym. 100, 166–178 (2014)CrossRef Abdelgawad, A.M., Hudson, S.M., Rojas, O.J.: Antimicrobial wound dressing nanofiber mats from multicomponent (chitosan/silver-NPs/polyvinyl alcohol) systems. Carbohydr. Polym. 100, 166–178 (2014)CrossRef
14.
Zurück zum Zitat Gorji, B., Ghasri, M.R.A., Fazaeli, R., Niksirat, N.: Synthesis and characterizations of silica nanoparticles by a new sol-gel method. J. Appl. Chem. Res. 6, 22–26 (2012) Gorji, B., Ghasri, M.R.A., Fazaeli, R., Niksirat, N.: Synthesis and characterizations of silica nanoparticles by a new sol-gel method. J. Appl. Chem. Res. 6, 22–26 (2012)
15.
Zurück zum Zitat Attaollahi, N., Ahmad, A., Hamzah, H., Rahman, M.Y.A., Mohamed, N.S.: Preparation and characterization of PVDF-HFP/MG49 based polymer blend electrolyte. Int. J. Electrochem. Sci. 7, 6693–6703 (2012) Attaollahi, N., Ahmad, A., Hamzah, H., Rahman, M.Y.A., Mohamed, N.S.: Preparation and characterization of PVDF-HFP/MG49 based polymer blend electrolyte. Int. J. Electrochem. Sci. 7, 6693–6703 (2012)
16.
Zurück zum Zitat Sivakumar, P, Gunasekaran, M, Sasikumar, M, Jagadeesan, A.: PVDF-HFP based porous polymer electrolyte for lithium battery applications. Int. J. Sci. Res., 22–25 (2013). ISSN (Online): 2319-7064 Sivakumar, P, Gunasekaran, M, Sasikumar, M, Jagadeesan, A.: PVDF-HFP based porous polymer electrolyte for lithium battery applications. Int. J. Sci. Res., 22–25 (2013). ISSN (Online): 2319-7064
17.
Zurück zum Zitat Nasir, M., Matsumoto, H., Danno, T., Minagawa, M., Irisawa, T., Shioya, M., Tanioka, A.: Control of diameter, morphology, and structure of PVDF nanofiber fabricated by electrospray deposition. J. Polym. Sci., Part B: Polym. Phys. 44, 779–786 (2006)CrossRef Nasir, M., Matsumoto, H., Danno, T., Minagawa, M., Irisawa, T., Shioya, M., Tanioka, A.: Control of diameter, morphology, and structure of PVDF nanofiber fabricated by electrospray deposition. J. Polym. Sci., Part B: Polym. Phys. 44, 779–786 (2006)CrossRef
18.
Zurück zum Zitat Conradi, M., Intihar, G., Zorko, M.: Mechanical and wetting properties of nanosilica/epoxy-coated stainless steel. Mater. Technol. 49, 613–618 (2015) Conradi, M., Intihar, G., Zorko, M.: Mechanical and wetting properties of nanosilica/epoxy-coated stainless steel. Mater. Technol. 49, 613–618 (2015)
19.
Zurück zum Zitat Vadillo, D.C., Soucemarianadin, A., Delattre, C., Roux, D.C.D.: Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces. Phys. Fluids 21, 122002 1–122002 8 (2009)CrossRef Vadillo, D.C., Soucemarianadin, A., Delattre, C., Roux, D.C.D.: Dynamic contact angle effects onto the maximum drop impact spreading on solid surfaces. Phys. Fluids 21, 122002 1–122002 8 (2009)CrossRef
Metadaten
Titel
Surface Modification of PVDF Copolymer Nanofiber by Chitosan/Ag(NP)/Nanosilica Composite
verfasst von
M. Nasir
R. I. Sugatri
D. M. Agustini
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-31866-6_45

Neuer Inhalt