Skip to main content
Erschienen in: Wireless Personal Communications 4/2020

21.12.2019

3D Modelling of Superconductor Enabled Magnetic Induction Transmitter and Relay Coil for Non-conventional Media Communication

verfasst von: Akshay Kulkarni, Vinay Kumar, Sadanand Yadav, Akhilendra Pratap Singh, Sanjay B. Dhok

Erschienen in: Wireless Personal Communications | Ausgabe 4/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The well established way of communication using radio frequency (RF) waves do not perform well in Non-Conventional (Non-Con) media viz. underground and underwater. Herein, the medium of soil or water is dynamic thus the use of RF technique is unusable. To establish a more effective communication in Non-Con media, researches showed that Magnetic Induction (MI) communication to be more suitable. In MI communication, parameters like number of turns, size and coil orientation have a significant effect on transceiver coil model. In this paper, a novel MI transmitter model using superconductor (SC) in one directional (1D) and in three directional (3D) is proposed. The model provides an enhanced magnetic field strength over a given distance. Further, SC based relay coils which collectively known as waveguide structure is also proposed to increase the MI communication range with intensified field strength. The performance evaluations are quantified in terms of communication range and received power for Non-Con medias. The frequency response for SC based transmitter model is given for maximum power transfer. Besides, the performance of traditional MI systems and waveguide are quantitatively compared with our improved SC based MI system and waveguide. The results show that the system has stronger magnetic field strength and greater communication range than the traditional ones.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Sharma, A. K., Yadav, S., Dandu, S. N., Kumar, V., Sengupta, J., Dhok, S. B., et al. (2017). Magnetic induction-based non-conventional media communications: A review. IEEE Sensors Journal, 17, 926–940.CrossRef Sharma, A. K., Yadav, S., Dandu, S. N., Kumar, V., Sengupta, J., Dhok, S. B., et al. (2017). Magnetic induction-based non-conventional media communications: A review. IEEE Sensors Journal, 17, 926–940.CrossRef
2.
Zurück zum Zitat Singh, P., Khosla, A., Kumar, A., & Khosla, M. (2017). 3D localization of moving target nodes using single anchor node in anisotropic wireless sensor networks. AEU-International Journal of Electronics and Communications, 82, 543–552.CrossRef Singh, P., Khosla, A., Kumar, A., & Khosla, M. (2017). 3D localization of moving target nodes using single anchor node in anisotropic wireless sensor networks. AEU-International Journal of Electronics and Communications, 82, 543–552.CrossRef
3.
Zurück zum Zitat Kumar, V., Bhusari, R., Dhok, S. B., Prakash, A., Tripathi, R., & Tiwari, S. (2018). Design of magnetic induction based energy-efficient wsns for nonconventional media using multilayer transmitter-enabled novel energy model. IEEE Systems Journal, 99, 1–12. Kumar, V., Bhusari, R., Dhok, S. B., Prakash, A., Tripathi, R., & Tiwari, S. (2018). Design of magnetic induction based energy-efficient wsns for nonconventional media using multilayer transmitter-enabled novel energy model. IEEE Systems Journal, 99, 1–12.
4.
Zurück zum Zitat Sandeep, D. N., & Kumar, V. (2017). Review on clustering, coverage and connectivity in underwater wireless sensor networks: A communication techniques perspective. IEEE Access, 5, 11176–11199.CrossRef Sandeep, D. N., & Kumar, V. (2017). Review on clustering, coverage and connectivity in underwater wireless sensor networks: A communication techniques perspective. IEEE Access, 5, 11176–11199.CrossRef
5.
Zurück zum Zitat Qian, H. Y., Zhou, P. B., & Ma, G. T. (2017). Magnetic coupling enhancement for contactless power transfer with superconductors. IEEE Magnetics Letters, 8, 1–4.CrossRef Qian, H. Y., Zhou, P. B., & Ma, G. T. (2017). Magnetic coupling enhancement for contactless power transfer with superconductors. IEEE Magnetics Letters, 8, 1–4.CrossRef
7.
Zurück zum Zitat Sun, Z., & Akyildiz, I. F. (2009). Underground wireless communication using magnetic induction. In IEEE International Conference on Communications (pp. 1-5), Dresden, Germany. Sun, Z., & Akyildiz, I. F. (2009). Underground wireless communication using magnetic induction. In IEEE International Conference on Communications (pp. 1-5), Dresden, Germany.
8.
Zurück zum Zitat Sun, Z., & Akyildiz, I. F. (2010). Magnetic induction communications for wireless underground sensor networks. IEEE Transactions on Antennas and Propagation, 58, 2426–2435.CrossRef Sun, Z., & Akyildiz, I. F. (2010). Magnetic induction communications for wireless underground sensor networks. IEEE Transactions on Antennas and Propagation, 58, 2426–2435.CrossRef
9.
Zurück zum Zitat Kisseleff, S., Gerstacker, W., Schober, R., Sun, Z., & Akyildiz, I. F. (2013). Channel capacity of magnetic induction based wireless underground sensor networks under practical constraints. In IEEE Wireless Communications and Networking Conference (WCNC) (pp. 2603–2608), Shanghai, China. Kisseleff, S., Gerstacker, W., Schober, R., Sun, Z., & Akyildiz, I. F. (2013). Channel capacity of magnetic induction based wireless underground sensor networks under practical constraints. In IEEE Wireless Communications and Networking Conference (WCNC) (pp. 2603–2608), Shanghai, China.
10.
Zurück zum Zitat Ahmed, N., Zheng, Y. R., & Pommerenke, D. ( 2015). Theoretical modeling of multi-coil channels in near field magneto-inductive communication. In: IEEE 82nd Vehicular Technology Conference, VTC2015-Fall (pp. 1–5), Boston, MA, USA. Ahmed, N., Zheng, Y. R., & Pommerenke, D. ( 2015). Theoretical modeling of multi-coil channels in near field magneto-inductive communication. In: IEEE 82nd Vehicular Technology Conference, VTC2015-Fall (pp. 1–5), Boston, MA, USA.
11.
Zurück zum Zitat Syms, R. R. A., Shamonina, E., & Solymar, L. (2006). Magneto-inductive waveguide devices. IEEE Proceedings-Microwaves, Antennas and Propagation, 153, 111–121.CrossRef Syms, R. R. A., Shamonina, E., & Solymar, L. (2006). Magneto-inductive waveguide devices. IEEE Proceedings-Microwaves, Antennas and Propagation, 153, 111–121.CrossRef
12.
Zurück zum Zitat Wiltshire, M. C. K., Shamonina, E., Young, I. R., & Solymar, L. (2003). Dispersion characteristics of magneto-inductive waves: Comparison between theory and experiment. IET Electronics Letters, 39, 215–217.CrossRef Wiltshire, M. C. K., Shamonina, E., Young, I. R., & Solymar, L. (2003). Dispersion characteristics of magneto-inductive waves: Comparison between theory and experiment. IET Electronics Letters, 39, 215–217.CrossRef
13.
Zurück zum Zitat Jiang, Y. Z., Ying, W. W., & HU, Q. L. (2018). Signal enhancement techniques for through-the-earth communication based on multiple references and beamforming. AEU-International Journal of Electronics and Communications, 86, 86–91.CrossRef Jiang, Y. Z., Ying, W. W., & HU, Q. L. (2018). Signal enhancement techniques for through-the-earth communication based on multiple references and beamforming. AEU-International Journal of Electronics and Communications, 86, 86–91.CrossRef
14.
Zurück zum Zitat Shen, B., Li, J., Geng, J., Fu, L., Zhang, X., Li, C., et al. (2017). Investigation and comparison of AC losses on stabilizer-free and copper stabilizer HTS tapes. Physica C: Superconductivity and Its Applications, 541, 40–44.CrossRef Shen, B., Li, J., Geng, J., Fu, L., Zhang, X., Li, C., et al. (2017). Investigation and comparison of AC losses on stabilizer-free and copper stabilizer HTS tapes. Physica C: Superconductivity and Its Applications, 541, 40–44.CrossRef
15.
Zurück zum Zitat Shen, B., Li, J., Geng, J., Fu, L., Zhang, X., Zhang, H., et al. (2017). Investigation of AC losses in horizontally parallel HTS tapes. Superconductor Science and Technology, 30, 750–756.CrossRef Shen, B., Li, J., Geng, J., Fu, L., Zhang, X., Zhang, H., et al. (2017). Investigation of AC losses in horizontally parallel HTS tapes. Superconductor Science and Technology, 30, 750–756.CrossRef
16.
Zurück zum Zitat Shen, B., Geng, J., Zhang, X., Fu, L., Li, C., Zhang, H., et al. (2017). AC losses in horizontally parallel HTS tapes for possible wireless power transfer applications. Physica C: Superconductivity and Its Applications, 543, 35–40.CrossRef Shen, B., Geng, J., Zhang, X., Fu, L., Li, C., Zhang, H., et al. (2017). AC losses in horizontally parallel HTS tapes for possible wireless power transfer applications. Physica C: Superconductivity and Its Applications, 543, 35–40.CrossRef
17.
Zurück zum Zitat Grilli, F., Pardo, E., Stenvall, A., Nguyen, D. N., Yuan, W., & Gömöry, F. (2014). Computation of losses in HTS under the action of varying magnetic fields and currents. IEEE Transactions on Applied Superconductivity, 24, 78–110.CrossRef Grilli, F., Pardo, E., Stenvall, A., Nguyen, D. N., Yuan, W., & Gömöry, F. (2014). Computation of losses in HTS under the action of varying magnetic fields and currents. IEEE Transactions on Applied Superconductivity, 24, 78–110.CrossRef
18.
Zurück zum Zitat Zhang, G., Yu, H., Jing, L., Li, J., Liu, Q., & Feng, X. (2014). Wireless power transfer using high temperature superconducting pancake coils. IEEE Transactions on Applied Superconductivity, 24, 1–5. Zhang, G., Yu, H., Jing, L., Li, J., Liu, Q., & Feng, X. (2014). Wireless power transfer using high temperature superconducting pancake coils. IEEE Transactions on Applied Superconductivity, 24, 1–5.
19.
Zurück zum Zitat Jeong, I. S., Choi, H. S., & Kang, M. S. (2015). Application of the superconductor coil for the improvement of wireless power transmission using magnetic resonance. Journal of Superconductivity and Novel Magnetism, 28, 639–644.CrossRef Jeong, I. S., Choi, H. S., & Kang, M. S. (2015). Application of the superconductor coil for the improvement of wireless power transmission using magnetic resonance. Journal of Superconductivity and Novel Magnetism, 28, 639–644.CrossRef
20.
Zurück zum Zitat Jing, H. C., & Wang, Y. E. (2008). Capacity performance of an inductively coupled near field communication system. In Antennas and Propagation Society International Symposium (pp. 1–4), San Diego, CA, USA. Jing, H. C., & Wang, Y. E. (2008). Capacity performance of an inductively coupled near field communication system. In Antennas and Propagation Society International Symposium (pp. 1–4), San Diego, CA, USA.
21.
Zurück zum Zitat Kumar, V. (2017). Energy dissipation model based on magnetic induction communication for non-conventional media. I.N Patent, no. 201721016878. Kumar, V. (2017). Energy dissipation model based on magnetic induction communication for non-conventional media. I.N Patent, no. 201721016878.
22.
Zurück zum Zitat Kisseleff, S., Gerstacker, W., Sun, Z., & Akyildiz, I. F. (2013). On the throughput of wireless underground sensor networks using magneto-inductive waveguides. In IEEE Global Communications Conference (pp. 322–328), Atlanta, GA, USA. Kisseleff, S., Gerstacker, W., Sun, Z., & Akyildiz, I. F. (2013). On the throughput of wireless underground sensor networks using magneto-inductive waveguides. In IEEE Global Communications Conference (pp. 322–328), Atlanta, GA, USA.
23.
Zurück zum Zitat Kisseleff, S., Akyildiz, I. F., & Gerstacker, W. ( 2013). Interference polarization in magnetic induction based wireless underground sensor networks. In IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC Workshops (pp. 71–75), London, UK. Kisseleff, S., Akyildiz, I. F., & Gerstacker, W. ( 2013). Interference polarization in magnetic induction based wireless underground sensor networks. In IEEE 24th International Symposium on Personal, Indoor and Mobile Radio Communications, PIMRC Workshops (pp. 71–75), London, UK.
24.
Zurück zum Zitat Ahmed, N., Zheng, Y. R., & Pommerenke, D. (2016). Multi-coil MI based MAC protocol for wireless sensor networks. In OCEANS MTS/IEEE (pp. 1–4), Monterey, CA, USA. Ahmed, N., Zheng, Y. R., & Pommerenke, D. (2016). Multi-coil MI based MAC protocol for wireless sensor networks. In OCEANS MTS/IEEE (pp. 1–4), Monterey, CA, USA.
25.
Zurück zum Zitat Sydoruk, O., Shamonina, E., & Solymar, L. (2007). Parametric amplification in coupled magnetoinductive waveguides. Journal of Physics D: Applied Physics, 40, 68–79.CrossRef Sydoruk, O., Shamonina, E., & Solymar, L. (2007). Parametric amplification in coupled magnetoinductive waveguides. Journal of Physics D: Applied Physics, 40, 68–79.CrossRef
26.
Zurück zum Zitat Syms, R. R. A., Solymar, L., & Young, I. R. (2008). Three-frequency parametric amplification in magneto-inductive ring resonators. Metamaterials, 2, 122–134.CrossRef Syms, R. R. A., Solymar, L., & Young, I. R. (2008). Three-frequency parametric amplification in magneto-inductive ring resonators. Metamaterials, 2, 122–134.CrossRef
27.
Zurück zum Zitat Frankl, D. R. (1986). Electromagnetic theory. Englewood Cliffs, NJ: Prentice-Hall. Frankl, D. R. (1986). Electromagnetic theory. Englewood Cliffs, NJ: Prentice-Hall.
28.
Zurück zum Zitat Kisseleff, S., Akyildiz, I. F., & Gerstacker, W. H. (2014). Throughput of the magnetic induction based wireless underground sensor networks: Key optimization techniques. IEEE Transactions on Communications, 62, 4426–4439.CrossRef Kisseleff, S., Akyildiz, I. F., & Gerstacker, W. H. (2014). Throughput of the magnetic induction based wireless underground sensor networks: Key optimization techniques. IEEE Transactions on Communications, 62, 4426–4439.CrossRef
Metadaten
Titel
3D Modelling of Superconductor Enabled Magnetic Induction Transmitter and Relay Coil for Non-conventional Media Communication
verfasst von
Akshay Kulkarni
Vinay Kumar
Sadanand Yadav
Akhilendra Pratap Singh
Sanjay B. Dhok
Publikationsdatum
21.12.2019
Verlag
Springer US
Erschienen in
Wireless Personal Communications / Ausgabe 4/2020
Print ISSN: 0929-6212
Elektronische ISSN: 1572-834X
DOI
https://doi.org/10.1007/s11277-019-07004-7

Weitere Artikel der Ausgabe 4/2020

Wireless Personal Communications 4/2020 Zur Ausgabe