Skip to main content
Erschienen in: Journal of Engineering Thermophysics 2/2022

01.06.2022

3D Numerical Simulation of Hydrodynamics and Heat Transfer in the Taylor Flow

verfasst von: M. V. Alekseev, I. S. Vozhakov

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The two-phase slug flow, or the Taylor flow, is used in a variety of applications, including efficient heat transfer in pulsating heat pipes (PHPs). The heat transfer efficiency is due to the presence of liquid thin film surrounding the bubble and separating it from the hot wall. The thin film facilitates much faster heat dissipation by evaporation as compared with single-phase cooling. The thinness of the liquid film also creates significant difficulty for numerical simulation of Taylor bubbles, and the lower is the bubble velocity, the thinner is the liquid film. We carried out a 3D simulation of the hydrodynamics and heat transfer during motion of Taylor bubbles of gas in a capillary tube with a diameter of 2 mm in the velocity range of 0.05–0.5 m/s, resolving the near-wall region in detail. The distributions of the friction coefficient and heat flux on the wall along the bubble motion were obtained. It was shown that complex cascade recirculation zones appeared near the bubble and led to significant change in both shear stresses and heat flux near the wall as compared with a single-phase flow.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Akachi, H., Pulsating Heat Pipes, Procs. 5th International Heat Pipe Symp., 1996. Akachi, H., Pulsating Heat Pipes, Procs. 5th International Heat Pipe Symp., 1996.
2.
Zurück zum Zitat Gupta, R., Fletcher, D., and Haynes, B., Taylor Flow in Microchannels: A Review of Experimental and Computational Work, J. Comput. Multiphase Flows, 2010, vol. 2, no. 1, pp. 1–31.CrossRef Gupta, R., Fletcher, D., and Haynes, B., Taylor Flow in Microchannels: A Review of Experimental and Computational Work, J. Comput. Multiphase Flows, 2010, vol. 2, no. 1, pp. 1–31.CrossRef
3.
Zurück zum Zitat Kashinsky, O.N. and Kurdyumov, A.S., Wall Shear Stress Distribution in an Annular Channel with a Stationary Gas Bubble, J. Eng. Therm., 2021, vol. 30, no. 4, pp. 646–653.CrossRef Kashinsky, O.N. and Kurdyumov, A.S., Wall Shear Stress Distribution in an Annular Channel with a Stationary Gas Bubble, J. Eng. Therm., 2021, vol. 30, no. 4, pp. 646–653.CrossRef
4.
Zurück zum Zitat Pakhomov, M.A. and Terekhov, V.I., Modeling of Flow Structure, Bubble Distribution, and Heat Transfer in Polydispersed Turbulent Bubbly Flow Using the Method of Delta Function Approximation, J. Eng. Therm., 2019, vol. 28, no. 4, pp. 453–471.CrossRef Pakhomov, M.A. and Terekhov, V.I., Modeling of Flow Structure, Bubble Distribution, and Heat Transfer in Polydispersed Turbulent Bubbly Flow Using the Method of Delta Function Approximation, J. Eng. Therm., 2019, vol. 28, no. 4, pp. 453–471.CrossRef
5.
Zurück zum Zitat Lobanov, P.D., Wall Shear Stress and Heat Transfer of Downward Bubbly Flow at Low Flow Rates of Liquid and Gas, J. Eng. Therm., 2018, vol. 27, no. 2, pp. 232–244.CrossRef Lobanov, P.D., Wall Shear Stress and Heat Transfer of Downward Bubbly Flow at Low Flow Rates of Liquid and Gas, J. Eng. Therm., 2018, vol. 27, no. 2, pp. 232–244.CrossRef
6.
Zurück zum Zitat Asadolahi, A.N., Gupta, R., Leung, S.S., Fletcher, D.F., and Haynes, B.S., Validation of a CFD Model of Taylor Flow Hydrodynamics and Heat Transfer, Chem. Engin. Sci., 2012, vol. 69, no. 1, pp. 541–552.CrossRef Asadolahi, A.N., Gupta, R., Leung, S.S., Fletcher, D.F., and Haynes, B.S., Validation of a CFD Model of Taylor Flow Hydrodynamics and Heat Transfer, Chem. Engin. Sci., 2012, vol. 69, no. 1, pp. 541–552.CrossRef
7.
Zurück zum Zitat Gupta, R., Fletcher, D.F., and Haynes, B.S., On the CFD Modeling of Taylor Flow in Microchannels, Chem. Engin. Sci., 2009, vol. 64, no. 12, pp. 2941–2950.CrossRef Gupta, R., Fletcher, D.F., and Haynes, B.S., On the CFD Modeling of Taylor Flow in Microchannels, Chem. Engin. Sci., 2009, vol. 64, no. 12, pp. 2941–2950.CrossRef
8.
Zurück zum Zitat Sharaborin, E.L., Rogozin, O.A., and Kasimov, A.R., Computational Study of the Dynamics of the Taylor Bubble, Fluids, 2021, vol. 6, no. 11, p. 389.ADSCrossRef Sharaborin, E.L., Rogozin, O.A., and Kasimov, A.R., Computational Study of the Dynamics of the Taylor Bubble, Fluids, 2021, vol. 6, no. 11, p. 389.ADSCrossRef
9.
Zurück zum Zitat Zimmer, M.D. and Bolotnov, I.A., Evaluation of Length Scales and Meshing Requirements for Resolving Two-Phase Flow Regime Transitions Using the Level Set Method, J. Fluids Engin., 2021, vol. 143, no. 6, p. 061403.CrossRef Zimmer, M.D. and Bolotnov, I.A., Evaluation of Length Scales and Meshing Requirements for Resolving Two-Phase Flow Regime Transitions Using the Level Set Method, J. Fluids Engin., 2021, vol. 143, no. 6, p. 061403.CrossRef
10.
Zurück zum Zitat Ferrari, A., Magnini, M., and Thome, J.R., A Flexible Coupled Level Set and Volume of Fluid (Flexclv) Method to Simulate Microscale Two-Phase Flow in Non-Uniform and Unstructured Meshes, Int. J. Multiphase Flow, 2017, vol. 91, pp. 276–295.MathSciNetCrossRef Ferrari, A., Magnini, M., and Thome, J.R., A Flexible Coupled Level Set and Volume of Fluid (Flexclv) Method to Simulate Microscale Two-Phase Flow in Non-Uniform and Unstructured Meshes, Int. J. Multiphase Flow, 2017, vol. 91, pp. 276–295.MathSciNetCrossRef
11.
Zurück zum Zitat Brackbill, J.U., Kothe, D.B., and Zemach, C., A Continuum Method for Modeling Surface Tension, J. Comput. Phys., 1992, vol. 100, no. 2, pp. 335–354.ADSMathSciNetCrossRef Brackbill, J.U., Kothe, D.B., and Zemach, C., A Continuum Method for Modeling Surface Tension, J. Comput. Phys., 1992, vol. 100, no. 2, pp. 335–354.ADSMathSciNetCrossRef
12.
Zurück zum Zitat Hirt, C.W. and Nichols, B.D., Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comput. Phys., 1981, vol. 39, no. 1, pp. 201–225.ADSCrossRef Hirt, C.W. and Nichols, B.D., Volume of Fluid (VOF) Method for the Dynamics of Free Boundaries, J. Comput. Phys., 1981, vol. 39, no. 1, pp. 201–225.ADSCrossRef
13.
Zurück zum Zitat Rusche, H., Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions, Ph.D. Thesis, Imperial College London (University of London), 2003. Rusche, H., Computational Fluid Dynamics of Dispersed Two-Phase Flows at High Phase Fractions, Ph.D. Thesis, Imperial College London (University of London), 2003.
14.
Zurück zum Zitat Taylor, G., Deposition of a Viscous Fluid on a Plane Surface, J. Fluid Mech., 1960, vol. 9, no. 2, pp. 218–224.ADSMathSciNetCrossRef Taylor, G., Deposition of a Viscous Fluid on a Plane Surface, J. Fluid Mech., 1960, vol. 9, no. 2, pp. 218–224.ADSMathSciNetCrossRef
15.
16.
Zurück zum Zitat Aussillous, P. and Quéré, D., Quick Deposition of a Fluid on the Wall of a Tube, Phys. Fluids, 2000, vol. 12, no. 10, pp. 2367–2371.ADSCrossRef Aussillous, P. and Quéré, D., Quick Deposition of a Fluid on the Wall of a Tube, Phys. Fluids, 2000, vol. 12, no. 10, pp. 2367–2371.ADSCrossRef
17.
Zurück zum Zitat de Ryck, A., The Effect of Weak Inertia on the Emptying of a Tube, Phys. Fluids, 2002, vol. 14, no. 7, pp. 2102–2108.ADSMathSciNetCrossRef de Ryck, A., The Effect of Weak Inertia on the Emptying of a Tube, Phys. Fluids, 2002, vol. 14, no. 7, pp. 2102–2108.ADSMathSciNetCrossRef
Metadaten
Titel
3D Numerical Simulation of Hydrodynamics and Heat Transfer in the Taylor Flow
verfasst von
M. V. Alekseev
I. S. Vozhakov
Publikationsdatum
01.06.2022
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 2/2022
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232822020102

Weitere Artikel der Ausgabe 2/2022

Journal of Engineering Thermophysics 2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.