Skip to main content
Erschienen in: Journal of Engineering Thermophysics 2/2022

01.06.2022

Development of Method of Low-Perturbation Multichannel Temperature Diagnostics in Vortex Tube

verfasst von: I. K. Kabardin, M. Kh. Pravdina, M. R. Gordienko, S. V. Kakaulin, S. V. Dvoinishnikov, V. G. Meledin, G. V. Bakakin, V. V. Rakhmanov, V. I. Polyakova, B. A. Sokolov, O. G. Derzho

Erschienen in: Journal of Engineering Thermophysics | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work, a method of low-perturbation temperature diagnostics in the Ranque–Hilsch vortex tube is developed. The method is based on scanning of temperature with a set of up to eight special small sensors. The temperature profiles were synchronously recorded in different cross sections of the vortex tube. Contour maps of temperature distribution have been constructed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ranque, G.J., Experiments on Expansion in a Vortex with Simultaneous Exhaust of Hot Air and Cold Air, Le Journal de Physique et le Radium, 1933, vol. 115, no. 4, pp. 112–114. Ranque, G.J., Experiments on Expansion in a Vortex with Simultaneous Exhaust of Hot Air and Cold Air, Le Journal de Physique et le Radium, 1933, vol. 115, no. 4, pp. 112–114.
2.
Zurück zum Zitat Hilsch, R., The Use of the Expansion of Gases in a Centrifugal Field as Cooling Process, Rev. Sci. Instrum., 1947, vol. 18, no. 2, pp. 108–113.ADSCrossRef Hilsch, R., The Use of the Expansion of Gases in a Centrifugal Field as Cooling Process, Rev. Sci. Instrum., 1947, vol. 18, no. 2, pp. 108–113.ADSCrossRef
3.
Zurück zum Zitat Eiamsa-ard, S. and Promvonge, P., Rewiew of Ranque–Hilsch Effects in Vortex Tubes, Renew. Sust. Energy Reviews, 2008, vol. 12, pp. 1882–1842.CrossRef Eiamsa-ard, S. and Promvonge, P., Rewiew of Ranque–Hilsch Effects in Vortex Tubes, Renew. Sust. Energy Reviews, 2008, vol. 12, pp. 1882–1842.CrossRef
4.
Zurück zum Zitat Xue, Y., Arjomandi, M., and Kelso, R.L., A Critical Review of Temperature Separation in a Vortex Tube, Exp. Therm. Fluid Sci., 2010, vol. 34, no. 8, pp. 1367–1374.CrossRef Xue, Y., Arjomandi, M., and Kelso, R.L., A Critical Review of Temperature Separation in a Vortex Tube, Exp. Therm. Fluid Sci., 2010, vol. 34, no. 8, pp. 1367–1374.CrossRef
5.
Zurück zum Zitat Kim, C.-S. and Sohn C.-H., Dynamic Characteristics of an Unsteady Flow through a Vortex Tube, J. Mech. Sci. Technol. (KSME Int. J.), 2006, vol. 20, no. 12, pp. 2209–2217.CrossRef Kim, C.-S. and Sohn C.-H., Dynamic Characteristics of an Unsteady Flow through a Vortex Tube, J. Mech. Sci. Technol. (KSME Int. J.), 2006, vol. 20, no. 12, pp. 2209–2217.CrossRef
6.
Zurück zum Zitat Gao, C., Experimental Study on the Ranque–Hilsch Vortex Tube, PhD Thesis, 2005, p. 151. Gao, C., Experimental Study on the Ranque–Hilsch Vortex Tube, PhD Thesis, 2005, p. 151.
7.
Zurück zum Zitat Kabardin, I.K., Meledin, V.G., Yavorsky, N.I., Pavlov, V.A., Pravdina, M.H., Kulikov, D.V., and Rahmanov, V.V., Small Disturbance Diagnostic Inside the Vortex Tube with A Square Cross-Section, Int. Conf. on the Methods of Aerophysical Research (ICMAR 2016). AIP Conf. Procs., vol. 1770, pp. 030003-1–030003-9; DOI: 10.1063/1.4963945 Kabardin, I.K., Meledin, V.G., Yavorsky, N.I., Pavlov, V.A., Pravdina, M.H., Kulikov, D.V., and Rahmanov, V.V., Small Disturbance Diagnostic Inside the Vortex Tube with A Square Cross-Section, Int. Conf. on the Methods of Aerophysical Research (ICMAR 2016). AIP Conf. Procs., vol. 1770, pp. 030003-1–030003-9; DOI: 10.1063/1.4963945
8.
Zurück zum Zitat Kabardin, I.K., Meledin, V.G., Yavorsky, N.I., Gordienko, M.R., Pravdina, M.Kh., Kulikov, D.V., Polyakova, V.I., and Pavlov, V.A., LDA Diagnostics of Velocity Fields inside the Ranque Tube, IOP Conf. Ser.: J. Phys.: Conf. Ser., 2018, vol. 980, p. 012043.CrossRef Kabardin, I.K., Meledin, V.G., Yavorsky, N.I., Gordienko, M.R., Pravdina, M.Kh., Kulikov, D.V., Polyakova, V.I., and Pavlov, V.A., LDA Diagnostics of Velocity Fields inside the Ranque Tube, IOP Conf. Ser.: J. Phys.: Conf. Ser., 2018, vol. 980, p. 012043.CrossRef
9.
Zurück zum Zitat Yavorsky, N.I., Meledin, V.G., Kabardin, I.K., Gordienko, M.R., Pravdina, M.Kh., Kulikov, D.V., Polyakova, V.I., and Pavlov, V.A., Velocity Field Diagnostics inside the Ranque–Hilsch Vortex Tube with Square Cross-Section, AIP Conf. Procs., 2018, vol. 2027, p. 030122. Yavorsky, N.I., Meledin, V.G., Kabardin, I.K., Gordienko, M.R., Pravdina, M.Kh., Kulikov, D.V., Polyakova, V.I., and Pavlov, V.A., Velocity Field Diagnostics inside the Ranque–Hilsch Vortex Tube with Square Cross-Section, AIP Conf. Procs., 2018, vol. 2027, p. 030122.
10.
Zurück zum Zitat Kabardin, I.K., Pravdina, M.Kh., Polyakova, V.I., Yavorsky, N.I., Pavlov, V.A., and Gordienko, M.R., The Subsonic Velocity Blocking Effect for an Aerodynamic Vortex Chamber, J. Phys.: Conf. Ser., 2018, vol. 1105, p. 012006. Kabardin, I.K., Pravdina, M.Kh., Polyakova, V.I., Yavorsky, N.I., Pavlov, V.A., and Gordienko, M.R., The Subsonic Velocity Blocking Effect for an Aerodynamic Vortex Chamber, J. Phys.: Conf. Ser., 2018, vol. 1105, p. 012006.
11.
Zurück zum Zitat Balzhinimaev, B.S., Ivanov, S.Y., Kabardin, I.K., Ezendeeva, D.P., Gordienko, M.R., Kakaulin, S.V., Klimonov, I.A., Sycheva, T.I., Usov, E.V., and Yavorskii, N.I., Computational Analysis of Gas Flow in Gas Distributor Breadboard for Creating Efficient Devices to Remove Volatile Organic Compounds, J. Eng. Therm., 2019, vol. 28, no. 3, pp. 372–380.CrossRef Balzhinimaev, B.S., Ivanov, S.Y., Kabardin, I.K., Ezendeeva, D.P., Gordienko, M.R., Kakaulin, S.V., Klimonov, I.A., Sycheva, T.I., Usov, E.V., and Yavorskii, N.I., Computational Analysis of Gas Flow in Gas Distributor Breadboard for Creating Efficient Devices to Remove Volatile Organic Compounds, J. Eng. Therm., 2019, vol. 28, no. 3, pp. 372–380.CrossRef
12.
Zurück zum Zitat Gordienko, M.R., Yavorsky, N.I., Pravdina, M.Kh., Polyakova, V.I., Ezendeeva, D.P., and Kakaulin, S.V., Small-Disturbance Temperature Diagnostics in Vortex Tube with a Square Cross-Section, IOP J. Phys.: Conf. Ser., 2019, vol. 1359, p. 012093. Gordienko, M.R., Yavorsky, N.I., Pravdina, M.Kh., Polyakova, V.I., Ezendeeva, D.P., and Kakaulin, S.V., Small-Disturbance Temperature Diagnostics in Vortex Tube with a Square Cross-Section, IOP J. Phys.: Conf. Ser., 2019, vol. 1359, p. 012093.
13.
Zurück zum Zitat Kabardin, I.K., Klimonov, I.A., Usov, E.V., Yavorsky, N.I., Kabardin, A.K., Kakaulin, S.V., Ezendeeva, D.P., Gordienko, M.R., Polyakova, V.I., and Pravdina, M.H., Calculation-Experiment Study of Gas Motion in Controlled Turning-and-Diverging Flow, J. Eng. Therm., 2020, vol. 29, no. 3, pp. 1–9.CrossRef Kabardin, I.K., Klimonov, I.A., Usov, E.V., Yavorsky, N.I., Kabardin, A.K., Kakaulin, S.V., Ezendeeva, D.P., Gordienko, M.R., Polyakova, V.I., and Pravdina, M.H., Calculation-Experiment Study of Gas Motion in Controlled Turning-and-Diverging Flow, J. Eng. Therm., 2020, vol. 29, no. 3, pp. 1–9.CrossRef
14.
Zurück zum Zitat Pravdina, M.Kh , Kabardin, I.K., Polyakova, V.I., Kulikov, D.V., Meledin, V.G., Pavlov, V.A., Gordienko, M.R., and Yavorsky, N.I., Hydraulic Flow Instability in a Ranque Tube, J. Appl. Mech. Tech. Phys., 2020, vol. 61, no. 3, pp. 384–390.ADSCrossRef Pravdina, M.Kh , Kabardin, I.K., Polyakova, V.I., Kulikov, D.V., Meledin, V.G., Pavlov, V.A., Gordienko, M.R., and Yavorsky, N.I., Hydraulic Flow Instability in a Ranque Tube, J. Appl. Mech. Tech. Phys., 2020, vol. 61, no. 3, pp. 384–390.ADSCrossRef
15.
Zurück zum Zitat Kabardin, I.K., Polyakova, V.I., Pravdina, M.Kh., Yavorsky, N.I., and Gordienko, M.R., Regime Analysis in Ranque Tubes with Circular and Square Working Channels, J. Appl. Mech. Tech. Phys., 2020, vol. 61, no. 1, pp. 37–44.ADSCrossRef Kabardin, I.K., Polyakova, V.I., Pravdina, M.Kh., Yavorsky, N.I., and Gordienko, M.R., Regime Analysis in Ranque Tubes with Circular and Square Working Channels, J. Appl. Mech. Tech. Phys., 2020, vol. 61, no. 1, pp. 37–44.ADSCrossRef
16.
Zurück zum Zitat Pravdina, M.Kh., Kabardin, I.K., Polyakova, V.I., Gordienko, M.R., and Yavorsky, N.I., The Crisis of Flow and an Inner Source of Heating in the Vortex Tube, IOP J. Phys.: Conf. Ser., 2020, vol. 1677, p. 012027; DOI 10.1088/1742-6596/1675/1/012027CrossRef Pravdina, M.Kh., Kabardin, I.K., Polyakova, V.I., Gordienko, M.R., and Yavorsky, N.I., The Crisis of Flow and an Inner Source of Heating in the Vortex Tube, IOP J. Phys.: Conf. Ser., 2020, vol. 1677, p. 012027; DOI 10.1088/1742-6596/1675/1/012027CrossRef
17.
Zurück zum Zitat Gordienko, M.R., Yavorsky, N.I., Pravdina, M.Kh., Kakaulin, S.V., and Kabardin, I.K., Visualization in the Ranque–Hilsch Vortex Tube Using High-Speed Video Recording, IOP J. Phys.: Conf. Ser., 2021, vol. 2119, p. 012104. Gordienko, M.R., Yavorsky, N.I., Pravdina, M.Kh., Kakaulin, S.V., and Kabardin, I.K., Visualization in the Ranque–Hilsch Vortex Tube Using High-Speed Video Recording, IOP J. Phys.: Conf. Ser., 2021, vol. 2119, p. 012104.
18.
Zurück zum Zitat Kabardin, I.K., Kolotilov, V.V., Usov, E.V., Yavorsky, N.I., Kabardin, A.K., Kakaulin, S.V., Gordienko, M.R., Polyakova, V.I., Pravdina, M.K., and Derzho, O.G., Features of Setting Boundary Conditions in Problems of Modeling Turbulent Gas Motion in Turning-and-Expanding Flow for \(k\)-\(\varepsilon\) Turbulence Model and Reynolds Stress Transfer Model, J. Eng. Therm., 2021, vol. 30, no. 2, pp. 317–323.CrossRef Kabardin, I.K., Kolotilov, V.V., Usov, E.V., Yavorsky, N.I., Kabardin, A.K., Kakaulin, S.V., Gordienko, M.R., Polyakova, V.I., Pravdina, M.K., and Derzho, O.G., Features of Setting Boundary Conditions in Problems of Modeling Turbulent Gas Motion in Turning-and-Expanding Flow for \(k\)-\(\varepsilon\) Turbulence Model and Reynolds Stress Transfer Model, J. Eng. Therm., 2021, vol. 30, no. 2, pp. 317–323.CrossRef
Metadaten
Titel
Development of Method of Low-Perturbation Multichannel Temperature Diagnostics in Vortex Tube
verfasst von
I. K. Kabardin
M. Kh. Pravdina
M. R. Gordienko
S. V. Kakaulin
S. V. Dvoinishnikov
V. G. Meledin
G. V. Bakakin
V. V. Rakhmanov
V. I. Polyakova
B. A. Sokolov
O. G. Derzho
Publikationsdatum
01.06.2022
Verlag
Pleiades Publishing
Erschienen in
Journal of Engineering Thermophysics / Ausgabe 2/2022
Print ISSN: 1810-2328
Elektronische ISSN: 1990-5432
DOI
https://doi.org/10.1134/S1810232822020114

Weitere Artikel der Ausgabe 2/2022

Journal of Engineering Thermophysics 2/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.