Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 5/2018

23.10.2017 | Original Article

A 3D Hermite-based multiscale local active contour method with elliptical shape constraints for segmentation of cardiac MR and CT volumes

verfasst von: Leiner Barba-J, Boris Escalante-Ramírez, Enrique Vallejo Venegas, Fernando Arámbula Cosío

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 5/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Analysis of cardiac images is a fundamental task to diagnose heart problems. Left ventricle (LV) is one of the most important heart structures used for cardiac evaluation. In this work, we propose a novel 3D hierarchical multiscale segmentation method based on a local active contour (AC) model and the Hermite transform (HT) for LV analysis in cardiac magnetic resonance (MR) and computed tomography (CT) volumes in short axis view. Features such as directional edges, texture, and intensities are analyzed using the multiscale HT space. A local AC model is configured using the HT coefficients and geometrical constraints. The endocardial and epicardial boundaries are used for evaluation. Segmentation of the endocardium is controlled using elliptical shape constraints. The final endocardial shape is used to define the geometrical constraints for segmentation of the epicardium. We follow the assumption that epicardial and endocardial shapes are similar in volumes with short axis view. An initialization scheme based on a fuzzy C-means algorithm and mathematical morphology was designed. The algorithm performance was evaluated using cardiac MR and CT volumes in short axis view demonstrating the feasibility of the proposed method.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat AlZubi S, Islam N, Abbod M (2011) Multiresolution analysis using wavelet, ridgelet, and curvelet transforms for medical image segmentation. Int J Biomed Imaging 2011(Article ID 136034): 1–18CrossRef AlZubi S, Islam N, Abbod M (2011) Multiresolution analysis using wavelet, ridgelet, and curvelet transforms for medical image segmentation. Int J Biomed Imaging 2011(Article ID 136034): 1–18CrossRef
2.
Zurück zum Zitat Andreopoulos A, Tsotsos JK (2008) Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Med Image Anal 12(3):335–357CrossRefPubMed Andreopoulos A, Tsotsos JK (2008) Efficient and generalizable statistical models of shape and appearance for analysis of cardiac MRI. Med Image Anal 12(3):335–357CrossRefPubMed
3.
Zurück zum Zitat van Assen HC, Danilouchkine MG, Frangi AF, Ordás S, Westenberg JJ, Reiber JH, Lelieveldt BP (2006) SPASM: A 3d-ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data. Med Image Anal 10(2):286–303CrossRefPubMed van Assen HC, Danilouchkine MG, Frangi AF, Ordás S, Westenberg JJ, Reiber JH, Lelieveldt BP (2006) SPASM: A 3d-ASM for segmentation of sparse and arbitrarily oriented cardiac MRI data. Med Image Anal 10(2):286–303CrossRefPubMed
4.
Zurück zum Zitat Axel L, Kim D (2008) Principles of CT and MRI. In: Marcelo RYK, Di Carli F (eds) Novel techniques for imaging the heart: Cardiac MR and CT, chap 1. Wiley-Blackwell, pp 3–16 Axel L, Kim D (2008) Principles of CT and MRI. In: Marcelo RYK, Di Carli F (eds) Novel techniques for imaging the heart: Cardiac MR and CT, chap 1. Wiley-Blackwell, pp 3–16
5.
Zurück zum Zitat Ayed IB, Li S, Ross I (2009) Embedding overlap priors in variational left ventricle tracking. IEEE Trans Med Imaging 28(12):1902–1913CrossRefPubMed Ayed IB, Li S, Ross I (2009) Embedding overlap priors in variational left ventricle tracking. IEEE Trans Med Imaging 28(12):1902–1913CrossRefPubMed
6.
Zurück zum Zitat Bai W, Shi W, Ledig C, Rueckert D (2015) Multi-atlas segmentation with augmented features for cardiac MR images. Med Image Anal 19(1):98–109CrossRefPubMed Bai W, Shi W, Ledig C, Rueckert D (2015) Multi-atlas segmentation with augmented features for cardiac MR images. Med Image Anal 19(1):98–109CrossRefPubMed
7.
Zurück zum Zitat Bai W, Shi W, O’Regan DP, Tong T, Wang H, Jamil-Copley S, Peters NS, Rueckert D (2013) A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images. IEEE Trans Med Imaging 32(7):1302–1315CrossRefPubMed Bai W, Shi W, O’Regan DP, Tong T, Wang H, Jamil-Copley S, Peters NS, Rueckert D (2013) A probabilistic patch-based label fusion model for multi-atlas segmentation with registration refinement: application to cardiac MR images. IEEE Trans Med Imaging 32(7):1302–1315CrossRefPubMed
8.
Zurück zum Zitat Barba-J L, Moya-Albor E, Escalante-Ramírez B, Brieva J, Venegas EV (2016) Segmentation and optical flow estimation in cardiac CT sequences based on a spatiotemporal PDM with a correction scheme and the Hermite transform. Comput Biol Med 69(1):189–202CrossRefPubMed Barba-J L, Moya-Albor E, Escalante-Ramírez B, Brieva J, Venegas EV (2016) Segmentation and optical flow estimation in cardiac CT sequences based on a spatiotemporal PDM with a correction scheme and the Hermite transform. Comput Biol Med 69(1):189–202CrossRefPubMed
9.
Zurück zum Zitat Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1):61–79CrossRef Caselles V, Kimmel R, Sapiro G (1997) Geodesic active contours. Int J Comput Vis 22(1):61–79CrossRef
10.
Zurück zum Zitat Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277CrossRefPubMed Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277CrossRefPubMed
11.
Zurück zum Zitat Cheung YF (2012) The role of 3D wall motion tracking in heart failure. Nat Rev Cardiol 9:644–657CrossRefPubMed Cheung YF (2012) The role of 3D wall motion tracking in heart failure. Nat Rev Cardiol 9:644–657CrossRefPubMed
12.
Zurück zum Zitat Chuang KS, Tzeng HL, Chen S, Wu J, Chen TJ (2006) Fuzzy c-means clustering with spatial information for image segmentation. Comput Med Imaging Graph 30(1):9–15CrossRefPubMed Chuang KS, Tzeng HL, Chen S, Wu J, Chen TJ (2006) Fuzzy c-means clustering with spatial information for image segmentation. Comput Med Imaging Graph 30(1):9–15CrossRefPubMed
13.
Zurück zum Zitat Cordero-Grande L, Vegas-Sánchez-Ferrero G, de-la Higuera PC, San-Román-Calvar JA, Revilla-Orodea A, Martín-Fernández M, Alberola-López C (2011) Unsupervised 4D myocardium segmentation with a Markov random field based deformable model. Med Image Anal 15(3):283–301CrossRefPubMed Cordero-Grande L, Vegas-Sánchez-Ferrero G, de-la Higuera PC, San-Román-Calvar JA, Revilla-Orodea A, Martín-Fernández M, Alberola-López C (2011) Unsupervised 4D myocardium segmentation with a Markov random field based deformable model. Med Image Anal 15(3):283–301CrossRefPubMed
14.
Zurück zum Zitat Daniel C, Mikael R, Rachid D (2007) A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int J Comput Vis 72(2):195–215CrossRef Daniel C, Mikael R, Rachid D (2007) A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int J Comput Vis 72(2):195–215CrossRef
15.
Zurück zum Zitat Dongwoo K, Jonghye W, Slomka PJ, Damini D, Guido G, Kuo C-CJ (2012) Heart chambers and whole heart segmentation techniques: review. J Electron Imaging 21(1):010,901–1–010,901–16CrossRef Dongwoo K, Jonghye W, Slomka PJ, Damini D, Guido G, Kuo C-CJ (2012) Heart chambers and whole heart segmentation techniques: review. J Electron Imaging 21(1):010,901–1–010,901–16CrossRef
16.
Zurück zum Zitat Dubuisson MP, Jain AK (1994) A modified Hausdorff distance for object matching. In: Proceedings of the 12th IAPR international conference on pattern recognition, 1994. Conference a: computer vision & image processing, vol 1, pp 566–568 Dubuisson MP, Jain AK (1994) A modified Hausdorff distance for object matching. In: Proceedings of the 12th IAPR international conference on pattern recognition, 1994. Conference a: computer vision & image processing, vol 1, pp 566–568
17.
Zurück zum Zitat Ecabert O, Peters J, Schramm H, Lorenz C, von Berg J, Walker MJ, Vembar M, Olszewski ME, Subramanyan K, Lavi G, Weese J (2008) Automatic model-based segmentation of the heart in CT images. IEEE Trans Med Imaging 27(9):1189–1201CrossRefPubMed Ecabert O, Peters J, Schramm H, Lorenz C, von Berg J, Walker MJ, Vembar M, Olszewski ME, Subramanyan K, Lavi G, Weese J (2008) Automatic model-based segmentation of the heart in CT images. IEEE Trans Med Imaging 27(9):1189–1201CrossRefPubMed
18.
Zurück zum Zitat Escalante-Ramírez B (2008) The hermite transform as an efficient model for local image analysis: an application to medical image fusion. Comput Electr Eng 34(2):99–110. Advances on Computer-based Biological Signal Processing TechniquesCrossRef Escalante-Ramírez B (2008) The hermite transform as an efficient model for local image analysis: an application to medical image fusion. Comput Electr Eng 34(2):99–110. Advances on Computer-based Biological Signal Processing TechniquesCrossRef
19.
Zurück zum Zitat Eslami A, Karamalis A, Katouzian A, Navab N (2013) Segmentation by retrieval with guided random walks: application to left ventricle segmentation in MRI. Med Image Anal 17(2):236–253CrossRefPubMed Eslami A, Karamalis A, Katouzian A, Navab N (2013) Segmentation by retrieval with guided random walks: application to left ventricle segmentation in MRI. Med Image Anal 17(2):236–253CrossRefPubMed
20.
Zurück zum Zitat Faghih Roohi S, Aghaeizadeh Zoroofi R (2013) 4D statistical shape modeling of the left ventricle in cardiac MR images. Int J CARS 8(3):335–351CrossRef Faghih Roohi S, Aghaeizadeh Zoroofi R (2013) 4D statistical shape modeling of the left ventricle in cardiac MR images. Int J CARS 8(3):335–351CrossRef
21.
Zurück zum Zitat Gaasch WH, Little WC (2007) Assessment of left ventricular diastolic function and recognition of diastolic heart failure. Circulation 116(6):591–593CrossRefPubMed Gaasch WH, Little WC (2007) Assessment of left ventricular diastolic function and recognition of diastolic heart failure. Circulation 116(6):591–593CrossRefPubMed
22.
Zurück zum Zitat Hu H, Gao Z, Liu L, Liu H, Gao J, Xu S, Li W, Huang L (2014) Automatic segmentation of the left ventricle in cardiac MRI using local binary fitting model and dynamic programming techniques. PLoS ONE 9(12):1–17 Hu H, Gao Z, Liu L, Liu H, Gao J, Xu S, Li W, Huang L (2014) Automatic segmentation of the left ventricle in cardiac MRI using local binary fitting model and dynamic programming techniques. PLoS ONE 9(12):1–17
23.
Zurück zum Zitat Hu H, Liu H, Gao Z, Huang L (2013) Hybrid segmentation of left ventricle in cardiac MRI using gaussian-mixture model and region restricted dynamic programming. Magn Reson Imaging 31(4):575–584CrossRefPubMed Hu H, Liu H, Gao Z, Huang L (2013) Hybrid segmentation of left ventricle in cardiac MRI using gaussian-mixture model and region restricted dynamic programming. Magn Reson Imaging 31(4):575–584CrossRefPubMed
24.
Zurück zum Zitat Jolly MP (2006) Automatic segmentation of the left ventricle in cardiac MR and CT images. Int J Comput Vis 70(2):151–163CrossRef Jolly MP (2006) Automatic segmentation of the left ventricle in cardiac MR and CT images. Int J Comput Vis 70(2):151–163CrossRef
26.
Zurück zum Zitat Lee HY, Codella NCF, Cham MD, Weinsaft JW, Wang Y (2010) Automatic left ventricle segmentation using iterative thresholding and an active contour model with adaptation on short-axis cardiac MRI. IEEE Trans Biomed Eng 57(4):905–913CrossRefPubMed Lee HY, Codella NCF, Cham MD, Weinsaft JW, Wang Y (2010) Automatic left ventricle segmentation using iterative thresholding and an active contour model with adaptation on short-axis cardiac MRI. IEEE Trans Biomed Eng 57(4):905–913CrossRefPubMed
27.
Zurück zum Zitat Li C, Kao CY, Gore JC, Ding Z (2008) Minimization of region-scalable fitting energy for image segmentation. IEEE Trans Image Process 17(10):1940–1949CrossRefPubMedPubMedCentral Li C, Kao CY, Gore JC, Ding Z (2008) Minimization of region-scalable fitting energy for image segmentation. IEEE Trans Image Process 17(10):1940–1949CrossRefPubMedPubMedCentral
28.
Zurück zum Zitat Martens JB (1990) The hermite transform-theory. IEEE Trans Acoust Speech Signal Process 38(9):1595–1606CrossRef Martens JB (1990) The hermite transform-theory. IEEE Trans Acoust Speech Signal Process 38(9):1595–1606CrossRef
29.
Zurück zum Zitat Mitiche A, Ayed IB (2011) Variational and level set methods in image segmentation, vol 5. Springer, BerlinCrossRef Mitiche A, Ayed IB (2011) Variational and level set methods in image segmentation, vol 5. Springer, BerlinCrossRef
30.
Zurück zum Zitat Mor-Avi V, Sugeng L, Weinert L, MacEneaney P, Caiani EG, Koch R, Salgo IS, Lang RM (2004) Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: Comparison with magnetic resonance imaging. Circulation 110(13):1814–1818CrossRefPubMed Mor-Avi V, Sugeng L, Weinert L, MacEneaney P, Caiani EG, Koch R, Salgo IS, Lang RM (2004) Fast measurement of left ventricular mass with real-time three-dimensional echocardiography: Comparison with magnetic resonance imaging. Circulation 110(13):1814–1818CrossRefPubMed
31.
Zurück zum Zitat Paragios N, Deriche R (2002) Geodesic active regions: a new framework to deal with frame partition problems in computer vision. J Vis Commun Image Represent 13(1–2):249–268CrossRef Paragios N, Deriche R (2002) Geodesic active regions: a new framework to deal with frame partition problems in computer vision. J Vis Commun Image Represent 13(1–2):249–268CrossRef
32.
Zurück zum Zitat Petitjean C, Dacher JN (2011) A review of segmentation methods in short axis cardiac MR images. Med Image Anal 15(2): 169–184CrossRefPubMed Petitjean C, Dacher JN (2011) A review of segmentation methods in short axis cardiac MR images. Med Image Anal 15(2): 169–184CrossRefPubMed
33.
Zurück zum Zitat Pham VT, Tran TT, Shyu KK, Lin LY, Wang YH, Lo MT (2014) Multiphase B-spline level set and incremental shape priors with applications to segmentation and tracking of left ventricle in cardiac MR images. Mach Vis Appl 25(8):1967–1987CrossRef Pham VT, Tran TT, Shyu KK, Lin LY, Wang YH, Lo MT (2014) Multiphase B-spline level set and incremental shape priors with applications to segmentation and tracking of left ventricle in cardiac MR images. Mach Vis Appl 25(8):1967–1987CrossRef
34.
Zurück zum Zitat Pluempitiwiriyawej C, Moura JMF, Wu YJL, Ho C (2005) STACS: new active contour scheme for cardiac mr image segmentation. IEEE Trans Med Imaging 24(5):593–603CrossRefPubMed Pluempitiwiriyawej C, Moura JMF, Wu YJL, Ho C (2005) STACS: new active contour scheme for cardiac mr image segmentation. IEEE Trans Med Imaging 24(5):593–603CrossRefPubMed
35.
Zurück zum Zitat Qian X, Lin Y, Zhao Y, Wang J, Liu J, Zhuang X (2015) Segmentation of myocardium from cardiac MR images using a novel dynamic programming based segmentation method. Med Phys 42(3):1424–1435CrossRefPubMed Qian X, Lin Y, Zhao Y, Wang J, Liu J, Zhuang X (2015) Segmentation of myocardium from cardiac MR images using a novel dynamic programming based segmentation method. Med Phys 42(3):1424–1435CrossRefPubMed
36.
Zurück zum Zitat Qin X, Tian Y, Yan P (2015) Feature competition and partial sparse shape modeling for cardiac image sequences segmentation. Neurocomputing 149 Part B:904–913CrossRef Qin X, Tian Y, Yan P (2015) Feature competition and partial sparse shape modeling for cardiac image sequences segmentation. Neurocomputing 149 Part B:904–913CrossRef
37.
Zurück zum Zitat Queirós S, Barbosa D, Heyde B, Morais P, Vilaça JL, Friboulet D, Bernard O, D’hooge J (2014) Fast automatic myocardial segmentation in 4D cine CMR datasets. Med Image Anal 18(7): 1115–1131CrossRefPubMed Queirós S, Barbosa D, Heyde B, Morais P, Vilaça JL, Friboulet D, Bernard O, D’hooge J (2014) Fast automatic myocardial segmentation in 4D cine CMR datasets. Med Image Anal 18(7): 1115–1131CrossRefPubMed
39.
Zurück zum Zitat Rosin PL (1993) A note on the least squares fitting of ellipses. Pattern Recogn Lett 14(10):799–808CrossRef Rosin PL (1993) A note on the least squares fitting of ellipses. Pattern Recogn Lett 14(10):799–808CrossRef
40.
Zurück zum Zitat Rousson M, Paragios N (2002) Shape priors for level set representations. In: Computer vision — ECCV 2002: 7th european conference on computer vision copenhagen, denmark, may 28–31, 2002 proceedings, Part II. Springer, Berlin, pp 78–92 Rousson M, Paragios N (2002) Shape priors for level set representations. In: Computer vision — ECCV 2002: 7th european conference on computer vision copenhagen, denmark, may 28–31, 2002 proceedings, Part II. Springer, Berlin, pp 78–92
41.
Zurück zum Zitat Schaerer J, Casta C, Pousin J, Clarysse P (2010) A dynamic elastic model for segmentation and tracking of the heart in MR image sequences. Med Image Anal 14(6):738–749CrossRefPubMed Schaerer J, Casta C, Pousin J, Clarysse P (2010) A dynamic elastic model for segmentation and tracking of the heart in MR image sequences. Med Image Anal 14(6):738–749CrossRefPubMed
42.
Zurück zum Zitat Senegas J, Cocosco CA, Netsch T (2004) Model-based segmentation of cardiac MRI cine sequences: a Bayesian formulation. In: Proceedings of the SPIE, vol 5370, pp 432–443 Senegas J, Cocosco CA, Netsch T (2004) Model-based segmentation of cardiac MRI cine sequences: a Bayesian formulation. In: Proceedings of the SPIE, vol 5370, pp 432–443
43.
Zurück zum Zitat Silvan-Cardenas JL, Escalante-Ramirez B (2006) The multiscale hermite transform for local orientation analysis. IEEE Trans Image Process 15(5):1236–1253CrossRefPubMed Silvan-Cardenas JL, Escalante-Ramirez B (2006) The multiscale hermite transform for local orientation analysis. IEEE Trans Image Process 15(5):1236–1253CrossRefPubMed
44.
Zurück zum Zitat Sliman H, Khalifa F, Elnakib A, Soliman A, El-Baz A, Beache GM, Elmaghraby A, Gimelfarb G (2013) Myocardial borders segmentation from cine MR images using bidirectional coupled parametric deformable models. Med Phys 40(9): 092302CrossRefPubMed Sliman H, Khalifa F, Elnakib A, Soliman A, El-Baz A, Beache GM, Elmaghraby A, Gimelfarb G (2013) Myocardial borders segmentation from cine MR images using bidirectional coupled parametric deformable models. Med Phys 40(9): 092302CrossRefPubMed
45.
Zurück zum Zitat Suinesiaputra A, Cowan BR, Al-Agamy AO, Elattar MA, Ayache N, Fahmy AS, Khalifa AM, Medrano-Gracia P, Jolly MP, Kadish AH, Lee DC, Margeta J, Warfield SK, Young AA (2014) A collaborative resource to build consensus for automated left ventricular segmentation of cardiac MR images. Med Image Anal 18(1):50–62CrossRefPubMed Suinesiaputra A, Cowan BR, Al-Agamy AO, Elattar MA, Ayache N, Fahmy AS, Khalifa AM, Medrano-Gracia P, Jolly MP, Kadish AH, Lee DC, Margeta J, Warfield SK, Young AA (2014) A collaborative resource to build consensus for automated left ventricular segmentation of cardiac MR images. Med Image Anal 18(1):50–62CrossRefPubMed
46.
Zurück zum Zitat Suinesiaputra A, Cowan BR, Finn JP, Fonseca CG, Kadish AH, Lee DC, Medrano-Gracia P, Warfield SK, Tao W, Young AA (2012) Left ventricular segmentation challenge from cardiac MRI: a collation study. In: Statistical atlases and computational models of the heart. Imaging and modelling challenges: Second international workshop, STACOM 2011, held in conjunction with MICCAI 2011, Toronto, ON, Canada, September 22, 2011, Revised Selected Papers. Springer, Berlin, pp 88–97 Suinesiaputra A, Cowan BR, Finn JP, Fonseca CG, Kadish AH, Lee DC, Medrano-Gracia P, Warfield SK, Tao W, Young AA (2012) Left ventricular segmentation challenge from cardiac MRI: a collation study. In: Statistical atlases and computational models of the heart. Imaging and modelling challenges: Second international workshop, STACOM 2011, held in conjunction with MICCAI 2011, Toronto, ON, Canada, September 22, 2011, Revised Selected Papers. Springer, Berlin, pp 88–97
47.
Zurück zum Zitat Tavakoli V, Amini AA (2013) A survey of shaped-based registration and segmentation techniques for cardiac images. Comput Vis Image Underst 117(9):966–989CrossRef Tavakoli V, Amini AA (2013) A survey of shaped-based registration and segmentation techniques for cardiac images. Comput Vis Image Underst 117(9):966–989CrossRef
48.
Zurück zum Zitat Tsadok Y, Petrank Y, Sarvari S, Edvardsen T, Adam D (2013) Automatic segmentation of cardiac MRI cines validated for long axis views. Comput Med Imaging Graph 37(7–8):500–511CrossRefPubMed Tsadok Y, Petrank Y, Sarvari S, Edvardsen T, Adam D (2013) Automatic segmentation of cardiac MRI cines validated for long axis views. Comput Med Imaging Graph 37(7–8):500–511CrossRefPubMed
49.
Zurück zum Zitat Woo J, Slomka PJ, Kuo CCJ, Hong BW (2013) Multiphase segmentation using an implicit dual shape prior: application to detection of left ventricle in cardiac MRI. Comput Vis Image Underst 117(9):1084–1094CrossRef Woo J, Slomka PJ, Kuo CCJ, Hong BW (2013) Multiphase segmentation using an implicit dual shape prior: application to detection of left ventricle in cardiac MRI. Comput Vis Image Underst 117(9):1084–1094CrossRef
50.
Zurück zum Zitat Wu Y, Wang Y, Jia Y (2013) Segmentation of the left ventricle in cardiac cine MRI using a shape-constrained snake model. Comput Vis Image Underst 117(9):990–1003CrossRef Wu Y, Wang Y, Jia Y (2013) Segmentation of the left ventricle in cardiac cine MRI using a shape-constrained snake model. Comput Vis Image Underst 117(9):990–1003CrossRef
51.
Zurück zum Zitat Zhu L, Gao Y, Appia V, Yezzi A, Arepalli C, Faber T, Stillman A, Tannenbaum A (2013) Automatic delineation of the myocardial wall from CT images via shape segmentation and variational region growing. IEEE Trans Biomed Eng 60(10):2887– 2895CrossRefPubMedPubMedCentral Zhu L, Gao Y, Appia V, Yezzi A, Arepalli C, Faber T, Stillman A, Tannenbaum A (2013) Automatic delineation of the myocardial wall from CT images via shape segmentation and variational region growing. IEEE Trans Biomed Eng 60(10):2887– 2895CrossRefPubMedPubMedCentral
52.
Zurück zum Zitat Zhu L, Gao Y, Appia V, Yezzi A, Arepalli C, Faber T, Stillman A, Tannenbaum A (2014) A complete system for automatic extraction of left ventricular myocardium from CT images using shape segmentation and contour evolution. IEEE Trans Image Process 23(3):1340–1351CrossRefPubMedCentral Zhu L, Gao Y, Appia V, Yezzi A, Arepalli C, Faber T, Stillman A, Tannenbaum A (2014) A complete system for automatic extraction of left ventricular myocardium from CT images using shape segmentation and contour evolution. IEEE Trans Image Process 23(3):1340–1351CrossRefPubMedCentral
Metadaten
Titel
A 3D Hermite-based multiscale local active contour method with elliptical shape constraints for segmentation of cardiac MR and CT volumes
verfasst von
Leiner Barba-J
Boris Escalante-Ramírez
Enrique Vallejo Venegas
Fernando Arámbula Cosío
Publikationsdatum
23.10.2017
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 5/2018
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-017-1732-9

Weitere Artikel der Ausgabe 5/2018

Medical & Biological Engineering & Computing 5/2018 Zur Ausgabe

Premium Partner