Skip to main content
Erschienen in: Journal of Computational Electronics 3/2017

18.05.2017

A 3D model of new composite ultrasonic transducer

verfasst von: Igor Jovanović, Dragan Mančić, Uglješa Jovanović, Miodrag Prokić

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A three-dimensional (3D) model of a high-power ultrasonic, composite, unidirectional transducer is proposed in this paper. The proposed 3D Matlab/Simulink model of the composite transducers predicts the thickness and the radial modes of oscillation as well as their mutual couplings. This longitudinal, prestressed, asymmetrical, piezoelectric transducer, which consists of two active piezoelectric layers, front, back and central oscillating metal mass, is realized. Due to its special structure, the central mass is not bounded using a bolt and performs unidirectional piston motion as compression and expansion occur in cycles keeping the axial dimension of the transducer roughly constant because of mutually opposite polarization of active elements. The electromechanical equivalent circuit of the transducer, representing one-dimensional (1D) model, is derived first and is also presented in this paper, while the resonance frequency equation is obtained analytically. Few composite transducers are designed and manufactured. Their resonance frequencies are measured and compared with the analytically obtained results for a large number of electrical connection combinations. In order to demonstrate the capabilities and limitations of the 1D model, comparison with the results from the 3D model are made. Results show that the measured frequencies are in good correspondence with the analytically obtained from 1D model only for the thickness modes and from the 3D model for the thickness and the radial modes of oscillation and their mutual coupling.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Harvey, G., Gachagan, A., Mutasa, T.: Review of high power ultrasound-industrial applications and measurement methods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 481–495 (2014)CrossRef Harvey, G., Gachagan, A., Mutasa, T.: Review of high power ultrasound-industrial applications and measurement methods. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61, 481–495 (2014)CrossRef
2.
Zurück zum Zitat Stansfield, D.: Underwater Electroacoustic Transducers. Bath University Press and Institute of Acoustics, Bath (1990) Stansfield, D.: Underwater Electroacoustic Transducers. Bath University Press and Institute of Acoustics, Bath (1990)
3.
Zurück zum Zitat Zhang, S., Xia, R., Lebrun, L., Anderson, D., Shrout, T.R.: Piezoelectric materials for high power, high temperature applications. Mater. Lett. 59, 3471–3475 (2005)CrossRef Zhang, S., Xia, R., Lebrun, L., Anderson, D., Shrout, T.R.: Piezoelectric materials for high power, high temperature applications. Mater. Lett. 59, 3471–3475 (2005)CrossRef
4.
Zurück zum Zitat Stevenson, T., Martin, D., Cowin, P., Blumfield, A., Bell, A., Comyn, T., Weaver, P.: Piezoelectric materials for high temperature transducers and actuators. J. Mater. Sci. Mater. Electron. 12, 9256–9267 (2015)CrossRef Stevenson, T., Martin, D., Cowin, P., Blumfield, A., Bell, A., Comyn, T., Weaver, P.: Piezoelectric materials for high temperature transducers and actuators. J. Mater. Sci. Mater. Electron. 12, 9256–9267 (2015)CrossRef
5.
Zurück zum Zitat Weaver, P., Stevenson, T., Quast, T., Bartl, G., Schmitz-Kempen, T., Woolliams, P., Blumfield, A., Stewart, M., Cain, M.G.: High temperature measurement and characterisation of piezoelectric properties. J. Mater. Sci. Mater. Electron. 26, 9268–9278 (2015)CrossRef Weaver, P., Stevenson, T., Quast, T., Bartl, G., Schmitz-Kempen, T., Woolliams, P., Blumfield, A., Stewart, M., Cain, M.G.: High temperature measurement and characterisation of piezoelectric properties. J. Mater. Sci. Mater. Electron. 26, 9268–9278 (2015)CrossRef
6.
Zurück zum Zitat Rosca, I.C., Chiriacescu, S.T., Cretu, N.C.: Ultrasonic horns optimization. Phys. Procedia 3, 1033–1040 (2010)CrossRef Rosca, I.C., Chiriacescu, S.T., Cretu, N.C.: Ultrasonic horns optimization. Phys. Procedia 3, 1033–1040 (2010)CrossRef
7.
Zurück zum Zitat Peshkovsky, S.L., Peshkovsky, A.S.: Matching a transducer to water at cavitation: acoustic horn design principles. Ultrason. Sonochem. 14, 314–322 (2007)CrossRef Peshkovsky, S.L., Peshkovsky, A.S.: Matching a transducer to water at cavitation: acoustic horn design principles. Ultrason. Sonochem. 14, 314–322 (2007)CrossRef
8.
Zurück zum Zitat Abdullah, A., Shahini, M., Pak, A.: An approach to design a high power piezoelectric ultrasonic transducer. J. Electroceram. 22, 369–382 (2009)CrossRef Abdullah, A., Shahini, M., Pak, A.: An approach to design a high power piezoelectric ultrasonic transducer. J. Electroceram. 22, 369–382 (2009)CrossRef
9.
Zurück zum Zitat Al-Budairi, H., Lucas, M., Harkness, P.: A design approach for longitudinal-torsional ultrasonic transducers. Sens. Actuators A Phys. 198, 99–106 (2013)CrossRef Al-Budairi, H., Lucas, M., Harkness, P.: A design approach for longitudinal-torsional ultrasonic transducers. Sens. Actuators A Phys. 198, 99–106 (2013)CrossRef
10.
Zurück zum Zitat Kim, H., Roh, Y.: Design and fabrication of a wideband Tonpilz transducer with a void head mass. Sens. Actuators A Phys. 239, 137–143 (2016) Kim, H., Roh, Y.: Design and fabrication of a wideband Tonpilz transducer with a void head mass. Sens. Actuators A Phys. 239, 137–143 (2016)
11.
Zurück zum Zitat Bejarano, F., Feeney, A., Lucas, M.: A cymbal transducer for power ultrasonics applications. Sens. Actuators A Phys. 210, 182–189 (2014)CrossRef Bejarano, F., Feeney, A., Lucas, M.: A cymbal transducer for power ultrasonics applications. Sens. Actuators A Phys. 210, 182–189 (2014)CrossRef
12.
Zurück zum Zitat Lin, S., Xu, L., Hu, W.: A new type of high power composite ultrasonic transducer. J. Sound Vib. 330, 1419–1431 (2011)CrossRef Lin, S., Xu, L., Hu, W.: A new type of high power composite ultrasonic transducer. J. Sound Vib. 330, 1419–1431 (2011)CrossRef
13.
Zurück zum Zitat Lin, S., Tian, H.: Study on the sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration. Smart Mater. Struct. 17, 1–9 (2008) Lin, S., Tian, H.: Study on the sandwich piezoelectric ceramic ultrasonic transducer in thickness vibration. Smart Mater. Struct. 17, 1–9 (2008)
14.
Zurück zum Zitat Liu, Y., Liu, J., Chen, A.W.: A cylindrical traveling wave ultrasonic motor using a circumferential composite transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 2397–2404 (2011)CrossRef Liu, Y., Liu, J., Chen, A.W.: A cylindrical traveling wave ultrasonic motor using a circumferential composite transducer. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 58, 2397–2404 (2011)CrossRef
15.
Zurück zum Zitat Zhang, Q., Shi, S., Chen, W.: An electromechanical coupling model of a longitudinal vibration type piezoelectric ultrasonic transducer. Ceram. Int. 41, 638–644 (2015)CrossRef Zhang, Q., Shi, S., Chen, W.: An electromechanical coupling model of a longitudinal vibration type piezoelectric ultrasonic transducer. Ceram. Int. 41, 638–644 (2015)CrossRef
16.
Zurück zum Zitat Ali, M.G.S., Elsyed, N.Z., Abdel Fattah, A.M., et al.: Loss mechanisms in piezoceramic materials. J. Comput. Electron. 11, 196–202 (2012)CrossRef Ali, M.G.S., Elsyed, N.Z., Abdel Fattah, A.M., et al.: Loss mechanisms in piezoceramic materials. J. Comput. Electron. 11, 196–202 (2012)CrossRef
17.
Zurück zum Zitat Mančić, D., Stančić, G.: New three-dimensional matrix models of the ultrasonic sandwich transducers. J. Sandw. Struct. Mater. 12, 63–80 (2010)CrossRef Mančić, D., Stančić, G.: New three-dimensional matrix models of the ultrasonic sandwich transducers. J. Sandw. Struct. Mater. 12, 63–80 (2010)CrossRef
18.
Zurück zum Zitat Jovanović, I., Mančić, D., Paunović, V., Radmanović, M., Petrušić, Z.: A Matlab/Simulink model of piezoceramic ring for transducer design. ICEST 2011(3), 952–955 (2011) Jovanović, I., Mančić, D., Paunović, V., Radmanović, M., Petrušić, Z.: A Matlab/Simulink model of piezoceramic ring for transducer design. ICEST 2011(3), 952–955 (2011)
19.
Zurück zum Zitat Jovanović, I., Mančić, D., Paunović, V., Radmanović, M., Mitić, V.V.: Metal rings and discs Matlab/Simulink 3D model for ultrasonic sandwich transducer design. Sci. Sinter. 44, 287–298 (2012)CrossRef Jovanović, I., Mančić, D., Paunović, V., Radmanović, M., Mitić, V.V.: Metal rings and discs Matlab/Simulink 3D model for ultrasonic sandwich transducer design. Sci. Sinter. 44, 287–298 (2012)CrossRef
20.
Zurück zum Zitat Five piezoelectric ceramics, (Bulletin 66011/F, Vernitron Ltd., 1976) Five piezoelectric ceramics, (Bulletin 66011/F, Vernitron Ltd., 1976)
21.
Zurück zum Zitat Properties of Piezoelectricity Ceramics, (Technical Publication TP-226, Morgan Electro Ceramics) Properties of Piezoelectricity Ceramics, (Technical Publication TP-226, Morgan Electro Ceramics)
22.
Zurück zum Zitat Shuyu, L.: Design of piezoelectric sandwich ultrasonic transducers with large cross-section. Appl. Acoust. 44, 249–257 (1995)CrossRef Shuyu, L.: Design of piezoelectric sandwich ultrasonic transducers with large cross-section. Appl. Acoust. 44, 249–257 (1995)CrossRef
23.
Zurück zum Zitat Mori, E., Itoh, K., Imamura, A.: Analysis of a short column vibrator by apparent elasticity method and its application. In: Ultrasonics International 1977 Conference Proceedings, pp. 262–265 (1977) Mori, E., Itoh, K., Imamura, A.: Analysis of a short column vibrator by apparent elasticity method and its application. In: Ultrasonics International 1977 Conference Proceedings, pp. 262–265 (1977)
Metadaten
Titel
A 3D model of new composite ultrasonic transducer
verfasst von
Igor Jovanović
Dragan Mančić
Uglješa Jovanović
Miodrag Prokić
Publikationsdatum
18.05.2017
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2017
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-017-1000-0

Weitere Artikel der Ausgabe 3/2017

Journal of Computational Electronics 3/2017 Zur Ausgabe

Neuer Inhalt