Skip to main content
Erschienen in: Journal of Computational Electronics 3/2017

18.05.2017

Analytical modeling and sensitivity analysis of dielectric-modulated junctionless gate stack surrounding gate MOSFET (JLGSSRG) for application as biosensor

verfasst von: Avik Chakraborty, Angsuman Sarkar

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An analytical model of dielectric-modulated junctionless gate-stack surrounding gate MOSFET for application as a biosensor is presented. An expression for the channel-center potential is obtained by solving the 2-D Poisson’s equation using a parabolic-potential approach. An analytical model for the threshold voltage is developed from the minimum channel-center potential to analyze the sensitivity of the biosensor. Moreover, the effects of the variation of the different device dimensional parameters on the sensitivity of the biosensor were investigated in order to study the dielectric modulation effects due to the permittivity changes by the biomolecules present within the nanogap cavity. The analytical model is verified and validated with the help of TCAD device simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Bergveld, P.: The development and application of FET-based biosensors. Biosensors 2(1), 15–33 (1986)CrossRef Bergveld, P.: The development and application of FET-based biosensors. Biosensors 2(1), 15–33 (1986)CrossRef
2.
Zurück zum Zitat Wenga, G., Jacques, E., Salaun, A.-C., et al.: Step-gate polysilicon nanowires field effect transistor compatible with CMOS technology for label-free DNA biosensor. Biosens. Bioelectron. 40(1), 141–146 (2013)CrossRef Wenga, G., Jacques, E., Salaun, A.-C., et al.: Step-gate polysilicon nanowires field effect transistor compatible with CMOS technology for label-free DNA biosensor. Biosens. Bioelectron. 40(1), 141–146 (2013)CrossRef
3.
Zurück zum Zitat Guan, W., Duan, X., Reed, M.A.: Highly specific and sensitive nonenzymatic determination of uric acid in serum and urine by extended gate field effect transistor sensors. Biosens. Bioelectron. 51, 225–231 (2014)CrossRef Guan, W., Duan, X., Reed, M.A.: Highly specific and sensitive nonenzymatic determination of uric acid in serum and urine by extended gate field effect transistor sensors. Biosens. Bioelectron. 51, 225–231 (2014)CrossRef
4.
Zurück zum Zitat Oh, S.W., Moon, J.D., Lim, H.J., Park, S.Y., Kim, T., Park, J.B., Han, M.H., Snyder, M., Choi, E.Y.: Calixarene derivative as a tool for highly sensitive detection and oriented immobilization of proteins in a microarray format through noncovalent molecular interaction. FASEB J. 19(10), 13551337 (2005) Oh, S.W., Moon, J.D., Lim, H.J., Park, S.Y., Kim, T., Park, J.B., Han, M.H., Snyder, M., Choi, E.Y.: Calixarene derivative as a tool for highly sensitive detection and oriented immobilization of proteins in a microarray format through noncovalent molecular interaction. FASEB J. 19(10), 13551337 (2005)
5.
Zurück zum Zitat Drummond, T.G., Hill, M.G., Barton, J.K.: Electrochemical DNA sensors. Nat. Biotechnol. 21(10), 1192–1199 (2003)CrossRef Drummond, T.G., Hill, M.G., Barton, J.K.: Electrochemical DNA sensors. Nat. Biotechnol. 21(10), 1192–1199 (2003)CrossRef
6.
Zurück zum Zitat Fritz, J., Baller, M.K., Lang, H.P., Rothuizen, H., Vettiger, P., Meyer, E., Güntherodt, H.-J., Gerber, Ch., Gimzewski, J.K.: Translating biomolecular recognition into nanomechanics. Science 288(5464), 316–318 (2000)CrossRef Fritz, J., Baller, M.K., Lang, H.P., Rothuizen, H., Vettiger, P., Meyer, E., Güntherodt, H.-J., Gerber, Ch., Gimzewski, J.K.: Translating biomolecular recognition into nanomechanics. Science 288(5464), 316–318 (2000)CrossRef
7.
Zurück zum Zitat Huang, X.-J., Choi, Y.-K., Im, H.-S., Yarimaga, O., Yoon, E., Kim, H.-S.: Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sens. Basel Sens. 6(7), 756–782 (2006)CrossRef Huang, X.-J., Choi, Y.-K., Im, H.-S., Yarimaga, O., Yoon, E., Kim, H.-S.: Aspartate aminotransferase (AST/GOT) and alanine aminotransferase (ALT/GPT) detection techniques. Sens. Basel Sens. 6(7), 756–782 (2006)CrossRef
8.
Zurück zum Zitat Yang, Y.T., Callegari, C., Feng, X.L., Ekinci, K.L., Roukes, M.L.: Zeptogram-scale nanomechanical mass sensing. Nanotechnol. Lett. 6(4), 583–586 (2006) Yang, Y.T., Callegari, C., Feng, X.L., Ekinci, K.L., Roukes, M.L.: Zeptogram-scale nanomechanical mass sensing. Nanotechnol. Lett. 6(4), 583–586 (2006)
9.
Zurück zum Zitat Cui, Y., Wei, Q., Park, H., Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001)CrossRef Cui, Y., Wei, Q., Park, H., Lieber, C.M.: Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species. Science 293(5533), 1289–1292 (2001)CrossRef
10.
Zurück zum Zitat Chen, K.I., Li, B.-R., Chen, Y.-T.: Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 6(2), 131–154 (2011)CrossRef Chen, K.I., Li, B.-R., Chen, Y.-T.: Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation. Nano Today 6(2), 131–154 (2011)CrossRef
11.
Zurück zum Zitat Allen, B.L., Kichambare, P.D., Star, A.: Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 19(11), 1439–1451 (2007)CrossRef Allen, B.L., Kichambare, P.D., Star, A.: Carbon nanotube field-effect-transistor-based biosensors. Adv. Mater. 19(11), 1439–1451 (2007)CrossRef
12.
Zurück zum Zitat Chan, W.C.W., Maxwell, D.J., Gao, X., Bailey, R.E., Han, M., Nie, S.: Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13(1), 40–46 (2002)CrossRef Chan, W.C.W., Maxwell, D.J., Gao, X., Bailey, R.E., Han, M., Nie, S.: Luminescent quantum dots for multiplexed biological detection and imaging. Curr. Opin. Biotechnol. 13(1), 40–46 (2002)CrossRef
13.
Zurück zum Zitat Curreli, M., Zhang, R., Ishikawa, F.N., Chang, H.-K., Cote, R.J., Zhou, C., Thompson, M.E.: Real-time, label-free detection of biological entities using nanowire-based FETs. IEEE Trans. Nanotechnol. 7(6), 651–667 (2008)CrossRef Curreli, M., Zhang, R., Ishikawa, F.N., Chang, H.-K., Cote, R.J., Zhou, C., Thompson, M.E.: Real-time, label-free detection of biological entities using nanowire-based FETs. IEEE Trans. Nanotechnol. 7(6), 651–667 (2008)CrossRef
14.
Zurück zum Zitat Syahir, A., Usui, K., Tomizaki, K.-Y., Kajikawa, K., Mihara, H.: Label and label-free detection techniques for protein microarrays. Microarrays 4, 228–244 (2015)CrossRef Syahir, A., Usui, K., Tomizaki, K.-Y., Kajikawa, K., Mihara, H.: Label and label-free detection techniques for protein microarrays. Microarrays 4, 228–244 (2015)CrossRef
15.
Zurück zum Zitat Ohno, Y., Maehashi, K., Matsumoto, K.: Label-free biosensors based on aptamer-modified graphene field-effect transistors. J. Am. Chem. Soc. 132, 18012–18013 (2010)CrossRef Ohno, Y., Maehashi, K., Matsumoto, K.: Label-free biosensors based on aptamer-modified graphene field-effect transistors. J. Am. Chem. Soc. 132, 18012–18013 (2010)CrossRef
16.
Zurück zum Zitat Sarkar, D., Liu, W., Xie, X., Anselmo, A.C., Mitragotri, S., Banerjee, Kaustav: MoS2 field-effect transistor for next-generation label-free biosensors. Acs Nano 8(4), 3992–4003 (2014)CrossRef Sarkar, D., Liu, W., Xie, X., Anselmo, A.C., Mitragotri, S., Banerjee, Kaustav: MoS2 field-effect transistor for next-generation label-free biosensors. Acs Nano 8(4), 3992–4003 (2014)CrossRef
17.
Zurück zum Zitat Im, H., Huang, X.-J., Gu, B., Choi, Y.-K.: A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2(7), 430–434 (2007)CrossRef Im, H., Huang, X.-J., Gu, B., Choi, Y.-K.: A dielectric-modulated field-effect transistor for biosensing. Nat. Nanotechnol. 2(7), 430–434 (2007)CrossRef
18.
Zurück zum Zitat Gu, B., Park, T.J., Ahn, J.-H., Huang, X.-J., Lee, S.Y., Choi, Y.-K.: Nanogap field-effect transistor biosensors for electrical detection of avian influenza. Small 5(21), 2407–2412 (2009)CrossRef Gu, B., Park, T.J., Ahn, J.-H., Huang, X.-J., Lee, S.Y., Choi, Y.-K.: Nanogap field-effect transistor biosensors for electrical detection of avian influenza. Small 5(21), 2407–2412 (2009)CrossRef
19.
Zurück zum Zitat Kim, C.-H., Jung, C., Park, H.G., Choi, Y.-K.: Novel dielectric modulated field-effect transistor for label-free DNA detection. Biochip J. 2(2), 127–134 (2008) Kim, C.-H., Jung, C., Park, H.G., Choi, Y.-K.: Novel dielectric modulated field-effect transistor for label-free DNA detection. Biochip J. 2(2), 127–134 (2008)
20.
Zurück zum Zitat Choi, J.-M., Han, J.-W., Choi, S.-J., Choi, Y.-K.: Analytical modeling of a nanogap-embedded FET for application as a biosensor. IEEE Trans. Electron Devices 57(12), 3477–3484 (2010)CrossRef Choi, J.-M., Han, J.-W., Choi, S.-J., Choi, Y.-K.: Analytical modeling of a nanogap-embedded FET for application as a biosensor. IEEE Trans. Electron Devices 57(12), 3477–3484 (2010)CrossRef
21.
Zurück zum Zitat Kannan, N., Jagadesh Kumar, M.: Dielectric-modulated impact-ionization MOS (DIMOS) transistor as a label-free biosensor. IEEE Electron Device Lett. 34(12), 1575–1577 (2013)CrossRef Kannan, N., Jagadesh Kumar, M.: Dielectric-modulated impact-ionization MOS (DIMOS) transistor as a label-free biosensor. IEEE Electron Device Lett. 34(12), 1575–1577 (2013)CrossRef
22.
Zurück zum Zitat Kannan, N., Kumar, M.J.: Charge-modulated underlap I-MOS transistor as a label-free biosensor: a simulation study. IEEE Trans. Electron Devices 62(8), 26452651 (2015)CrossRef Kannan, N., Kumar, M.J.: Charge-modulated underlap I-MOS transistor as a label-free biosensor: a simulation study. IEEE Trans. Electron Devices 62(8), 26452651 (2015)CrossRef
23.
Zurück zum Zitat Kanungo, S., Gupta, P.S., Rhaman, H.: Effects of Germanium mole fraction variation at the source of a dielectrically modulated Tunneling FET based biosensor. In: 2014 2nd International Conference on Devices, Circuits and Systems (ICDCS), pp. 1–5, 6–8 (2014) Kanungo, S., Gupta, P.S., Rhaman, H.: Effects of Germanium mole fraction variation at the source of a dielectrically modulated Tunneling FET based biosensor. In: 2014 2nd International Conference on Devices, Circuits and Systems (ICDCS), pp. 1–5, 6–8 (2014)
24.
Zurück zum Zitat Narang, R., Reddy, K.V.S., Saxena, M., Gupta, R.S., Gupta, M.: A Dielectric-modulated tunnel-FET-based biosensor for label-free detection: analytical modeling study and sensitivity analysis. IEEE Trans. Electron Devices 59(10), 2809–2817 (2012)CrossRef Narang, R., Reddy, K.V.S., Saxena, M., Gupta, R.S., Gupta, M.: A Dielectric-modulated tunnel-FET-based biosensor for label-free detection: analytical modeling study and sensitivity analysis. IEEE Trans. Electron Devices 59(10), 2809–2817 (2012)CrossRef
25.
Zurück zum Zitat Chiang, T.-K.: A new quasi-2-D threshold voltage model for short-channel junctionless cylindrical surrounding gate (JLCSG) MOSFETs. IEEE Trans. Electron Devices 59(11), 3127–3129 (2012)CrossRef Chiang, T.-K.: A new quasi-2-D threshold voltage model for short-channel junctionless cylindrical surrounding gate (JLCSG) MOSFETs. IEEE Trans. Electron Devices 59(11), 3127–3129 (2012)CrossRef
26.
Zurück zum Zitat Hu, G., Ping, X., Zhihao, D., Ran, L., Lingli, W., Tang, T.-A.: Analytical models for electric potential, threshold voltage, and subthreshold swing of junctionless surrounding-gate transistors. IEEE Trans. Electron Devices 61(3), 688–695 (2014)CrossRef Hu, G., Ping, X., Zhihao, D., Ran, L., Lingli, W., Tang, T.-A.: Analytical models for electric potential, threshold voltage, and subthreshold swing of junctionless surrounding-gate transistors. IEEE Trans. Electron Devices 61(3), 688–695 (2014)CrossRef
27.
Zurück zum Zitat Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Theory of the junctionless nanowire FET. IEEE Trans. Electron Devices 58(9), 2903–2910 (2011)CrossRef Gnani, E., Gnudi, A., Reggiani, S., Baccarani, G.: Theory of the junctionless nanowire FET. IEEE Trans. Electron Devices 58(9), 2903–2910 (2011)CrossRef
28.
Zurück zum Zitat Duarte, J.P., Choi, S.J., Moon, D.I., Choi, Y.K.: Simple analytical bulk current model for long-channel double-gate junctionless transistors. IEEE Electron Device Lett. 32(6), 704–706 (2011)CrossRef Duarte, J.P., Choi, S.J., Moon, D.I., Choi, Y.K.: Simple analytical bulk current model for long-channel double-gate junctionless transistors. IEEE Electron Device Lett. 32(6), 704–706 (2011)CrossRef
29.
Zurück zum Zitat Buitrago, E., Giorgos, F., Badia, M.F.B., Georgiev, Y.M., Berthomé, M., Ionescu, A.M.: Junctionless silicon nanowire transistors for the tunable operation of a highly sensitive, low power sensor. Sens. Actuators B Chem. 183, 1–10 (2013)CrossRef Buitrago, E., Giorgos, F., Badia, M.F.B., Georgiev, Y.M., Berthomé, M., Ionescu, A.M.: Junctionless silicon nanowire transistors for the tunable operation of a highly sensitive, low power sensor. Sens. Actuators B Chem. 183, 1–10 (2013)CrossRef
30.
Zurück zum Zitat Nair, P.R., Alam, M.A.: Design considerations of silicon nanowire biosensors. IEEE Trans. Electron Devices 54(12), 3400–3408 (2007)CrossRef Nair, P.R., Alam, M.A.: Design considerations of silicon nanowire biosensors. IEEE Trans. Electron Devices 54(12), 3400–3408 (2007)CrossRef
31.
Zurück zum Zitat Narang, R., Saxena, M., Gupta, M.: Investigation of dielectric modulated (DM) double gate (DG) junctionless MOSFETs for application as a biosensors. Superlattices Microstruct. 85, 557–572 (2015)CrossRef Narang, R., Saxena, M., Gupta, M.: Investigation of dielectric modulated (DM) double gate (DG) junctionless MOSFETs for application as a biosensors. Superlattices Microstruct. 85, 557–572 (2015)CrossRef
32.
Zurück zum Zitat Ahangari, Z.: Performance assessment of dual material gate dielectric modulated nanowire junctionless MOSFET for ultrasensitive detection of biomolecules. RSC Adv. 6(92), 89185–89191 (2016)CrossRef Ahangari, Z.: Performance assessment of dual material gate dielectric modulated nanowire junctionless MOSFET for ultrasensitive detection of biomolecules. RSC Adv. 6(92), 89185–89191 (2016)CrossRef
33.
Zurück zum Zitat Parihar, M.S., Kranti, A.: Enhanced sensitivity of double gate junctionless transistor architecture for biosensing applications. Nanotechnology 26(14), 145201 (2015)CrossRef Parihar, M.S., Kranti, A.: Enhanced sensitivity of double gate junctionless transistor architecture for biosensing applications. Nanotechnology 26(14), 145201 (2015)CrossRef
34.
Zurück zum Zitat Barik, M.A., Deka, R., Dutta, J.C.: Carbon nanotube-based dual-gated junctionless field-effect transistor for acetylcholine detection. IEEE Sens. J. 16(2), 280–286 (2016)CrossRef Barik, M.A., Deka, R., Dutta, J.C.: Carbon nanotube-based dual-gated junctionless field-effect transistor for acetylcholine detection. IEEE Sens. J. 16(2), 280–286 (2016)CrossRef
35.
Zurück zum Zitat Liu, K.M., Peng, F.I., Peng, K.P., Lin, H.-C., Huang, T.Y.: The effects of channel doping concentration for n-type junction-less double-gate poly-Si nanostrip transistors. Semicond. Sci. Technol. 29(5), 055001 (2014)CrossRef Liu, K.M., Peng, F.I., Peng, K.P., Lin, H.-C., Huang, T.Y.: The effects of channel doping concentration for n-type junction-less double-gate poly-Si nanostrip transistors. Semicond. Sci. Technol. 29(5), 055001 (2014)CrossRef
36.
Zurück zum Zitat Wilk, G.D., Wallace, R.M., Anthony, J.M.: High-\(\kappa \) gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89(10), 5243–5275 (2001)CrossRef Wilk, G.D., Wallace, R.M., Anthony, J.M.: High-\(\kappa \) gate dielectrics: Current status and materials properties considerations. J. Appl. Phys. 89(10), 5243–5275 (2001)CrossRef
37.
Zurück zum Zitat Buchanan, D.A.: Scaling the gate dielectric: materials, integration, and reliability. IBM J. Res. Dev. 43(3), 245–264 (1999)CrossRef Buchanan, D.A.: Scaling the gate dielectric: materials, integration, and reliability. IBM J. Res. Dev. 43(3), 245–264 (1999)CrossRef
38.
Zurück zum Zitat Poonam, K., Saxena, M., Gupta, R.S.: Modeling and simulation of STacked Gate Oxide (STGO) architecture in silicon-on-nothing (SON) MOSFET. Solid State Electron. 49(10), 1639–1648 (2005)CrossRef Poonam, K., Saxena, M., Gupta, R.S.: Modeling and simulation of STacked Gate Oxide (STGO) architecture in silicon-on-nothing (SON) MOSFET. Solid State Electron. 49(10), 1639–1648 (2005)CrossRef
39.
Zurück zum Zitat Lee, C.H., Ferain, I., Afzalian, A., Yan, R., Akhavan, N.D., Razavi, P., Colinge, J.P.: Performance estimation of junctionless multigate transistors. Solid State Electron. 54(2), 97–103 (2010)CrossRef Lee, C.H., Ferain, I., Afzalian, A., Yan, R., Akhavan, N.D., Razavi, P., Colinge, J.P.: Performance estimation of junctionless multigate transistors. Solid State Electron. 54(2), 97–103 (2010)CrossRef
40.
Zurück zum Zitat Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Colinge, J.P.: Junctionless multigate field-effect transistor. Appl. Phys. Lett. 94(5), 053511 (2009)CrossRef Lee, C.W., Afzalian, A., Akhavan, N.D., Yan, R., Ferain, I., Colinge, J.P.: Junctionless multigate field-effect transistor. Appl. Phys. Lett. 94(5), 053511 (2009)CrossRef
41.
Zurück zum Zitat Colinge, J.P., Kranti, A., Yan, R., Lee, W., Ferain, I., Yu, R., Dehdashti Akhavan, N., Razavi, P.: unctionless nanowire transistor (JNT): properties and design guidelines. Solid State Electron. 65, 33–37 (2011)CrossRef Colinge, J.P., Kranti, A., Yan, R., Lee, W., Ferain, I., Yu, R., Dehdashti Akhavan, N., Razavi, P.: unctionless nanowire transistor (JNT): properties and design guidelines. Solid State Electron. 65, 33–37 (2011)CrossRef
42.
Zurück zum Zitat Ghosh, B., Akram, M.W.: Junctionless tunnel field effect transistor. IEEE Electron Device Lett. 34(5), 584–586 (2013)CrossRef Ghosh, B., Akram, M.W.: Junctionless tunnel field effect transistor. IEEE Electron Device Lett. 34(5), 584–586 (2013)CrossRef
43.
Zurück zum Zitat Rewari, S., Nath, V., Haldar, S., Deswal, S.S., Gupta, R.S.: Improved analog and AC performance with increased noise immunity using nanotube junctionless field effect transistor (NJLFET). Appl. Phys. A 122(12), 1049 (2016)CrossRef Rewari, S., Nath, V., Haldar, S., Deswal, S.S., Gupta, R.S.: Improved analog and AC performance with increased noise immunity using nanotube junctionless field effect transistor (NJLFET). Appl. Phys. A 122(12), 1049 (2016)CrossRef
44.
Zurück zum Zitat Chanda, M., Dey, P., De, S., Sarkar, C.K.: Novel charge plasma based dielectric modulated impact ionization MOSFET as a biosensor for label-free detection. Superlattices Microstruct. 86, 446–455 (2015)CrossRef Chanda, M., Dey, P., De, S., Sarkar, C.K.: Novel charge plasma based dielectric modulated impact ionization MOSFET as a biosensor for label-free detection. Superlattices Microstruct. 86, 446–455 (2015)CrossRef
45.
Zurück zum Zitat Mondal, P., Ghosh, B., Bal, P.: Planar junctionless transistor with non-uniform channel doping. Appl. Phys. Lett. 102(13), 133505 (2013)CrossRef Mondal, P., Ghosh, B., Bal, P.: Planar junctionless transistor with non-uniform channel doping. Appl. Phys. Lett. 102(13), 133505 (2013)CrossRef
46.
Zurück zum Zitat Sahay, S., Kumar, M.J.: Realizing efficient volume depletion in SOI junctionless FETs. IEEE J. Electron Devices Soc. 4(3), 110–115 (2016)CrossRef Sahay, S., Kumar, M.J.: Realizing efficient volume depletion in SOI junctionless FETs. IEEE J. Electron Devices Soc. 4(3), 110–115 (2016)CrossRef
47.
Zurück zum Zitat Hubbard, K.J., Schlom, D.G.: Thermodynamic stability of binary oxides in contact with silicon. J. Mater. Res. 11(11), 2757–2776 (1996)CrossRef Hubbard, K.J., Schlom, D.G.: Thermodynamic stability of binary oxides in contact with silicon. J. Mater. Res. 11(11), 2757–2776 (1996)CrossRef
49.
Zurück zum Zitat Ortiz-Conde, A., Garcia-Sanchez, F.J., Malobabic, S.: Analytic solution of the channel potential in undoped symmetric dual-gate MOSFETs. IEEE Trans. Electron Devices 52(7), 1669–1672 (2005)CrossRef Ortiz-Conde, A., Garcia-Sanchez, F.J., Malobabic, S.: Analytic solution of the channel potential in undoped symmetric dual-gate MOSFETs. IEEE Trans. Electron Devices 52(7), 1669–1672 (2005)CrossRef
50.
Zurück zum Zitat Lundstrom, M.S., Ren, Z.: Essential physics of carrier transport in nanoscale MOSFETs. IEEE Trans. Electron Devices 49, 133–141 (2002)CrossRef Lundstrom, M.S., Ren, Z.: Essential physics of carrier transport in nanoscale MOSFETs. IEEE Trans. Electron Devices 49, 133–141 (2002)CrossRef
51.
Zurück zum Zitat Ionescu-Zanetti, C., Nevill, J.T., Di Carlo, D., Jeong, K.H., Lee, L.P.: Nanogap capacitors: sensitivity to sample permittivity changes. J. Appl. Phys. 99(2), 024305- (2006)CrossRef Ionescu-Zanetti, C., Nevill, J.T., Di Carlo, D., Jeong, K.H., Lee, L.P.: Nanogap capacitors: sensitivity to sample permittivity changes. J. Appl. Phys. 99(2), 024305- (2006)CrossRef
52.
Zurück zum Zitat Offenhäusser, A., Rinaldi, R.: Nanobioelectronics for Electronics, Biology, and Medicine. Springer-Verlag, New York (2009)CrossRef Offenhäusser, A., Rinaldi, R.: Nanobioelectronics for Electronics, Biology, and Medicine. Springer-Verlag, New York (2009)CrossRef
53.
Zurück zum Zitat Kinsella, J.M., Ivanisevic, A.: Biosensing: taking charge of biomolecules. Nat. Nanotechnol. 2(10), 596–597 (2007)CrossRef Kinsella, J.M., Ivanisevic, A.: Biosensing: taking charge of biomolecules. Nat. Nanotechnol. 2(10), 596–597 (2007)CrossRef
54.
Zurück zum Zitat Narang, R., Saxena, M., Gupta, R.S., Gupta, M.: Dielectric modulated tunnel field effect transistor—a biomolecule sensor. IEEE Electron Device Lett. 33(2), 266–268 (2012)CrossRef Narang, R., Saxena, M., Gupta, R.S., Gupta, M.: Dielectric modulated tunnel field effect transistor—a biomolecule sensor. IEEE Electron Device Lett. 33(2), 266–268 (2012)CrossRef
55.
Zurück zum Zitat Kang, H., Han, J.-W., Choi, Y.-K.: Analytical threshold voltage model for double-gate MOSFETs with localized charges. IEEE Electron Device Lett. 29(8), 92730 (2008)CrossRef Kang, H., Han, J.-W., Choi, Y.-K.: Analytical threshold voltage model for double-gate MOSFETs with localized charges. IEEE Electron Device Lett. 29(8), 92730 (2008)CrossRef
56.
Zurück zum Zitat Dashiell, M.W., Kalambur, A.T., Leeson, R., Roe, K.J., Rabolt, J.F., Kolodzey, J.: The electrical effects of DNA as the gate electrode of MOS transistors. In: Proceedings of the IEEE Lester Eastman Conference, pp. 259–264 (2002) Dashiell, M.W., Kalambur, A.T., Leeson, R., Roe, K.J., Rabolt, J.F., Kolodzey, J.: The electrical effects of DNA as the gate electrode of MOS transistors. In: Proceedings of the IEEE Lester Eastman Conference, pp. 259–264 (2002)
57.
Zurück zum Zitat Busse, S., Scheumann, V., Menges, B., Mittler, S.: Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods. Biosens. Bioelectron. 17(8), 704–710 (2002)CrossRef Busse, S., Scheumann, V., Menges, B., Mittler, S.: Sensitivity studies for specific binding reactions using the biotin/streptavidin system by evanescent optical methods. Biosens. Bioelectron. 17(8), 704–710 (2002)CrossRef
58.
Zurück zum Zitat Densmore, A., Xu, D.-X., Janz, S., Waldron, P., Mischki, T., Lopinski, G., Delâge, A., Lapointe, J., Cheben, P., Lamontagne, B.: Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response. Opt. Lett. 33(6), 596–598 (2008)CrossRef Densmore, A., Xu, D.-X., Janz, S., Waldron, P., Mischki, T., Lopinski, G., Delâge, A., Lapointe, J., Cheben, P., Lamontagne, B.: Spiral-path high-sensitivity silicon photonic wire molecular sensor with temperature-independent response. Opt. Lett. 33(6), 596–598 (2008)CrossRef
59.
Zurück zum Zitat Makarona, E., Kapetanakis, E., Velessiotis, D., Douvas, A., Argitis, P., Normand, P., Gotszalk, T., Woszczyna, M., Glezos, N.: Vertical devices of self-assembled hybrid organic/inorganic monolayers based on tungsten polyoxometalates. Microelectron. Eng. 85(5), 1399–1402 (2008)CrossRef Makarona, E., Kapetanakis, E., Velessiotis, D., Douvas, A., Argitis, P., Normand, P., Gotszalk, T., Woszczyna, M., Glezos, N.: Vertical devices of self-assembled hybrid organic/inorganic monolayers based on tungsten polyoxometalates. Microelectron. Eng. 85(5), 1399–1402 (2008)CrossRef
60.
Zurück zum Zitat Kim, S., Baek, D., Kim, J.-Y., Choi, S.-J., Seol, M.-L., Choi, Y.-K.: A transistor-based biosensor for the extraction of physical properties from biomolecules. Appl. Phys. Lett. 101(7), 073703 (2012)CrossRef Kim, S., Baek, D., Kim, J.-Y., Choi, S.-J., Seol, M.-L., Choi, Y.-K.: A transistor-based biosensor for the extraction of physical properties from biomolecules. Appl. Phys. Lett. 101(7), 073703 (2012)CrossRef
61.
Zurück zum Zitat Kinsella, J.M., Ivanisevic, A.: Biosensing: taking charge of biomolecules. Nat. Nanotechnol. 2(10), 596–597 (2007)CrossRef Kinsella, J.M., Ivanisevic, A.: Biosensing: taking charge of biomolecules. Nat. Nanotechnol. 2(10), 596–597 (2007)CrossRef
62.
Zurück zum Zitat Jang, D.Y., Kim, Y.P., Kim, H.S., Park, S.H.K., Choi, S.Y., Choi, Y.K.: Sublithographic vertical gold nanogap for label-free electrical detection of protein-ligand binding. J. Vac. Sci. Technol. B 25(2), 443–447 (2007)CrossRef Jang, D.Y., Kim, Y.P., Kim, H.S., Park, S.H.K., Choi, S.Y., Choi, Y.K.: Sublithographic vertical gold nanogap for label-free electrical detection of protein-ligand binding. J. Vac. Sci. Technol. B 25(2), 443–447 (2007)CrossRef
63.
Zurück zum Zitat Kim, S., Kim, J.Y., Ahn, J.H., Park, T.J., Lee, S.Y., Choi, Y.K.: A charge pumping technique to identify biomolecular charge polarity using a nanogap embedded biotransistor. Appl. Phys. Lett. 97, 053702 (2010)CrossRef Kim, S., Kim, J.Y., Ahn, J.H., Park, T.J., Lee, S.Y., Choi, Y.K.: A charge pumping technique to identify biomolecular charge polarity using a nanogap embedded biotransistor. Appl. Phys. Lett. 97, 053702 (2010)CrossRef
64.
Zurück zum Zitat Singh, D., Pandey, S., Nigam, K., Sharma, D., Yadav, D.S., Kondekar, P.: A Charge-plasma-based dielectric-modulated junctionless TFET for biosensor label-free detection. IEEE Trans. Electron Devices 64(1), 271–278 (2017)CrossRef Singh, D., Pandey, S., Nigam, K., Sharma, D., Yadav, D.S., Kondekar, P.: A Charge-plasma-based dielectric-modulated junctionless TFET for biosensor label-free detection. IEEE Trans. Electron Devices 64(1), 271–278 (2017)CrossRef
65.
Zurück zum Zitat Young, K.K.: Short-channel effects in fully depleted SOI MOSFET’s. IEEE Trans. Electron Devices 36, 399–402 (1989)CrossRef Young, K.K.: Short-channel effects in fully depleted SOI MOSFET’s. IEEE Trans. Electron Devices 36, 399–402 (1989)CrossRef
66.
Zurück zum Zitat Razavi , P., Orouji, A.A.: Dual material gate oxide stack symmetric double gate MOSFET: improving short channel effects of nanoscale double gate MOSFET, In: Electronics Conference, 2008. BEC 2008. 11th International Biennial Baltic, IEEE, pp. 83–86 (2008) Razavi , P., Orouji, A.A.: Dual material gate oxide stack symmetric double gate MOSFET: improving short channel effects of nanoscale double gate MOSFET, In: Electronics Conference, 2008. BEC 2008. 11th International Biennial Baltic, IEEE, pp. 83–86 (2008)
67.
Zurück zum Zitat Kang, H., Han, J.W., Choi, Y.K.: Analytical threshold voltage model for double-gate MOSFETs with localized charges. IEEE Electron Device Lett. 29(8), 927–930 (2008)CrossRef Kang, H., Han, J.W., Choi, Y.K.: Analytical threshold voltage model for double-gate MOSFETs with localized charges. IEEE Electron Device Lett. 29(8), 927–930 (2008)CrossRef
68.
Zurück zum Zitat Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-$ \(\backslash \) kappa $ gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRef Boucart, K., Ionescu, A.M.: Double-gate tunnel FET with high-$ \(\backslash \) kappa $ gate dielectric. IEEE Trans. Electron Devices 54(7), 1725–1733 (2007)CrossRef
69.
Zurück zum Zitat Sharma, A., Jain, A., Pratap, Y., Gupta, R.S.: Effect of high-k and vacuum dielectrics as gate stack on a junctionless cylindrical surrounding gate (JL-CSG) MOSFET. Solid State Electron. 123, 26–32 (2016)CrossRef Sharma, A., Jain, A., Pratap, Y., Gupta, R.S.: Effect of high-k and vacuum dielectrics as gate stack on a junctionless cylindrical surrounding gate (JL-CSG) MOSFET. Solid State Electron. 123, 26–32 (2016)CrossRef
70.
Zurück zum Zitat Rigante, S., Scarbolo, P., Wipf, M., Stoop, R.L., Bedner, K., Buitrago, E., Bazigos, A., et al.: Sensing with Advanced computing technology: fin field-effect transistors with high-k gate stack on bulk silicon. ACS Nano 9(5), 4872–4881 (2015)CrossRef Rigante, S., Scarbolo, P., Wipf, M., Stoop, R.L., Bedner, K., Buitrago, E., Bazigos, A., et al.: Sensing with Advanced computing technology: fin field-effect transistors with high-k gate stack on bulk silicon. ACS Nano 9(5), 4872–4881 (2015)CrossRef
71.
Zurück zum Zitat Yan, R., Lynch, D., Cayron, T., Lederer, D., Afzalian, A., Lee, C.-W., et al.: Sensitivity of trigate MOSFETs to random dopant induced threshold voltage fluctuations. Solid State Electron 52(12), 1872–1876 (2008)CrossRef Yan, R., Lynch, D., Cayron, T., Lederer, D., Afzalian, A., Lee, C.-W., et al.: Sensitivity of trigate MOSFETs to random dopant induced threshold voltage fluctuations. Solid State Electron 52(12), 1872–1876 (2008)CrossRef
Metadaten
Titel
Analytical modeling and sensitivity analysis of dielectric-modulated junctionless gate stack surrounding gate MOSFET (JLGSSRG) for application as biosensor
verfasst von
Avik Chakraborty
Angsuman Sarkar
Publikationsdatum
18.05.2017
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2017
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-017-0999-2

Weitere Artikel der Ausgabe 3/2017

Journal of Computational Electronics 3/2017 Zur Ausgabe

Neuer Inhalt