Skip to main content
Erschienen in: Journal of Computational Electronics 3/2017

05.06.2017

2-D analytical modeling for electrostatic potential and threshold voltage of a dual work function gate Schottky barrier MOSFET

verfasst von: Prashanth Kumar, Brinda Bhowmick

Erschienen in: Journal of Computational Electronics | Ausgabe 3/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A two-dimensional analytical model for the surface potential and threshold voltage of a dual work function Schottky barrier (SB) MOSFET is presented. The developed model considers the effects of the varying gate metal work function, gate and drain voltages, and different doping concentrations, gate dielectric permittivity, and silicon thickness. For solving the electrostatic potential of the SB-MOSFET by using Poisson’s equation with appropriate boundary conditions, parabolic approximation has been considered. The proposed device has also incorporated the effect of barrier height lowering at the metal/semiconductor contacts. The results of our modeled surface potential and the threshold voltage, match with technology computer aided design simulations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Lundstrom, M., Ren, Z.: Essential physics of carrier transport in nanoscale MOSFETs. IEEE Trans. Electron Devices 49, 133–141 (2002)CrossRef Lundstrom, M., Ren, Z.: Essential physics of carrier transport in nanoscale MOSFETs. IEEE Trans. Electron Devices 49, 133–141 (2002)CrossRef
2.
Zurück zum Zitat Saitoh, W., Itoh, A., Yamagami, S., Asada, M.: Analysis of short-channel schottky source/drain metal-oxide-semiconductor field-effect transistor on silicon-on-insulator substrate and demonstration of sub-50-nm n-type devices with metal gate. Jpn. J. Appl. Phys. 38, 6226 (1999)CrossRef Saitoh, W., Itoh, A., Yamagami, S., Asada, M.: Analysis of short-channel schottky source/drain metal-oxide-semiconductor field-effect transistor on silicon-on-insulator substrate and demonstration of sub-50-nm n-type devices with metal gate. Jpn. J. Appl. Phys. 38, 6226 (1999)CrossRef
3.
Zurück zum Zitat Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. Wiley, New York (1981) Sze, S.M.: Physics of Semiconductor Devices, 2nd edn. Wiley, New York (1981)
4.
Zurück zum Zitat Larson, J.M., Snyder, J.P.: Overview and status of metal S/D schottky-barrier MOSFET technology. IEEE Trans. Electron. Devices 53, 1048–1058 (2006)CrossRef Larson, J.M., Snyder, J.P.: Overview and status of metal S/D schottky-barrier MOSFET technology. IEEE Trans. Electron. Devices 53, 1048–1058 (2006)CrossRef
5.
Zurück zum Zitat Huang, C.-K., Zhang, W.E., Yang, C.H.: Two-dimensional numerical simulation of schottky barrier MOSFET with channel length to 10 nm. IEEE Trans. Electron. Devices 45, 842–848 (1998)CrossRef Huang, C.-K., Zhang, W.E., Yang, C.H.: Two-dimensional numerical simulation of schottky barrier MOSFET with channel length to 10 nm. IEEE Trans. Electron. Devices 45, 842–848 (1998)CrossRef
6.
Zurück zum Zitat Dubois, E., Larrieu, Guilhem: Low schottky barrier source/drain for advanced MOS architecture device design and material considerations. Solid-State Electron. 46, 997–1004 (2002)CrossRef Dubois, E., Larrieu, Guilhem: Low schottky barrier source/drain for advanced MOS architecture device design and material considerations. Solid-State Electron. 46, 997–1004 (2002)CrossRef
7.
Zurück zum Zitat Zhu, S., Chen, J., Li, M.-F., Lee, S.J., Singh, J., Zhu, C.X., Du, A., Tung, C.H., Chin, A., Kwong, D.L.: N-Type schottky barrier source/drain MOSFET Using Ytterbium Silicide. IEEE Electron Device Lett. 25, 565–567 (2004)CrossRef Zhu, S., Chen, J., Li, M.-F., Lee, S.J., Singh, J., Zhu, C.X., Du, A., Tung, C.H., Chin, A., Kwong, D.L.: N-Type schottky barrier source/drain MOSFET Using Ytterbium Silicide. IEEE Electron Device Lett. 25, 565–567 (2004)CrossRef
8.
Zurück zum Zitat Dimoulas, A., Tsipas, P., Sotiropoulos, A., Evangelou, E.K.: Fermi-level pinning and charge neutrality level in germanium. Appl. Phys. Lett. 89, 252110 (2006)CrossRef Dimoulas, A., Tsipas, P., Sotiropoulos, A., Evangelou, E.K.: Fermi-level pinning and charge neutrality level in germanium. Appl. Phys. Lett. 89, 252110 (2006)CrossRef
9.
Zurück zum Zitat Jin, L., Hong-Xia, L., Bin, L., Lei, C., Bo, Y.: Study on two-dimensional analytical models for symmetrical gate stack dual gate strained silicon MOSFETs. Chin. Phys. B 19, 107302 (2010)CrossRef Jin, L., Hong-Xia, L., Bin, L., Lei, C., Bo, Y.: Study on two-dimensional analytical models for symmetrical gate stack dual gate strained silicon MOSFETs. Chin. Phys. B 19, 107302 (2010)CrossRef
10.
Zurück zum Zitat Kumar, M.J., Venkataraman, V., Nawal, S.: A simple analytical threshold voltage model of nanoscale single-layer fully depleted strained-silicon-on-insulator MOSFETs. IEEE Trans. Electron Devices 53, 2500–2506 (2006)CrossRef Kumar, M.J., Venkataraman, V., Nawal, S.: A simple analytical threshold voltage model of nanoscale single-layer fully depleted strained-silicon-on-insulator MOSFETs. IEEE Trans. Electron Devices 53, 2500–2506 (2006)CrossRef
11.
Zurück zum Zitat SILVACO International Incorporated: ATLAS user’s manual, version 5.12.0.R. Silvaco Inc. (2013) SILVACO International Incorporated: ATLAS user’s manual, version 5.12.0.R. Silvaco Inc. (2013)
12.
Zurück zum Zitat Padilla, J.L., Knoll, L., Gamiz, F., Zhao, Q.T., Godoy, A., Mantl, S.: Simulation of Fabricated 20-nm schottky barrier MOSFETs on SOI: impact of Barrier Lowering. IEEE Trans. Electron Devices 59, 1320–1327 (2012)CrossRef Padilla, J.L., Knoll, L., Gamiz, F., Zhao, Q.T., Godoy, A., Mantl, S.: Simulation of Fabricated 20-nm schottky barrier MOSFETs on SOI: impact of Barrier Lowering. IEEE Trans. Electron Devices 59, 1320–1327 (2012)CrossRef
13.
Zurück zum Zitat Young, K.K.: Short-channel effect in fully depleted SOI MOSFETs. IEEE Trans. Electron Devices 36, 399–402 (1989)CrossRef Young, K.K.: Short-channel effect in fully depleted SOI MOSFETs. IEEE Trans. Electron Devices 36, 399–402 (1989)CrossRef
14.
Zurück zum Zitat Kumar, M., Haldar, S., Gupta, M., Gupta, R.S.: Analytical model of threshold voltage degradation due to localized charges in gate material engineered schottky barrier cylindrical GAA MOSFETs. Semicond. Sci. Technol. 31, 105013 (2016)CrossRef Kumar, M., Haldar, S., Gupta, M., Gupta, R.S.: Analytical model of threshold voltage degradation due to localized charges in gate material engineered schottky barrier cylindrical GAA MOSFETs. Semicond. Sci. Technol. 31, 105013 (2016)CrossRef
15.
Zurück zum Zitat Kumar, M., Dubey, S., Tiwari, P.K., Jit, S.: An analytical model of threshold voltage for short-channel double-material-gate (DMG) strained-Si (s-Si) on Silicon-Germanium-on-Insulator (SGOI) MOSFETs. J. Comput. Electron. 12, 20–28 (2013)CrossRef Kumar, M., Dubey, S., Tiwari, P.K., Jit, S.: An analytical model of threshold voltage for short-channel double-material-gate (DMG) strained-Si (s-Si) on Silicon-Germanium-on-Insulator (SGOI) MOSFETs. J. Comput. Electron. 12, 20–28 (2013)CrossRef
16.
Zurück zum Zitat Kaur, H., Kabra, S., Haldar, S., Gupta, R.S.: An analytical threshold voltage model for graded channel asymmetric gate stack (GCASYMGAS) surrounding gate MOSFET. Solid-State Electron. 52, 305–311 (2008)CrossRef Kaur, H., Kabra, S., Haldar, S., Gupta, R.S.: An analytical threshold voltage model for graded channel asymmetric gate stack (GCASYMGAS) surrounding gate MOSFET. Solid-State Electron. 52, 305–311 (2008)CrossRef
17.
Zurück zum Zitat Goel, E., Kumar, S., Singh, K., Singh, B., Kumar, M., Jit, S.: 2-D analytical modeling of threshold voltage for graded-channel dual-material double-gate MOSFETs. IEEE Trans. Electron Devices 63, 966–973 (2016) Goel, E., Kumar, S., Singh, K., Singh, B., Kumar, M., Jit, S.: 2-D analytical modeling of threshold voltage for graded-channel dual-material double-gate MOSFETs. IEEE Trans. Electron Devices 63, 966–973 (2016)
18.
Zurück zum Zitat Saxena, M., Haldar, S., Gupta, M., Gupta, R.S.: Physics-based analytical modeling of potential and electrical field distribution in dual material gate (DMG)-MOSFET for improved hot electron effect and carrier transport efficiency. IEEE Trans. Electron Devices 49, 1928–1938 (2002) Saxena, M., Haldar, S., Gupta, M., Gupta, R.S.: Physics-based analytical modeling of potential and electrical field distribution in dual material gate (DMG)-MOSFET for improved hot electron effect and carrier transport efficiency. IEEE Trans. Electron Devices 49, 1928–1938 (2002)
19.
Zurück zum Zitat Mukherjee, S., Bandyopadhyay, D., Dutta, P.K., Sarkar, S.K.: Quantum analytical modeling and simulation of CNT on insulator (COI) and CNT on nothing (CON) FET: a comparative analysis. J. Theor. Appl. Phys. 10, 91–97 (2016)CrossRef Mukherjee, S., Bandyopadhyay, D., Dutta, P.K., Sarkar, S.K.: Quantum analytical modeling and simulation of CNT on insulator (COI) and CNT on nothing (CON) FET: a comparative analysis. J. Theor. Appl. Phys. 10, 91–97 (2016)CrossRef
20.
Zurück zum Zitat Chiang, T.-K.: A new analytical subthreshold behavior model for single-halo, dual-material gate silicon-on-insulator metal oxide semiconductor field effect transistor. Jpn. J. Appl. Phys. 47, 8297 (2008)CrossRef Chiang, T.-K.: A new analytical subthreshold behavior model for single-halo, dual-material gate silicon-on-insulator metal oxide semiconductor field effect transistor. Jpn. J. Appl. Phys. 47, 8297 (2008)CrossRef
Metadaten
Titel
2-D analytical modeling for electrostatic potential and threshold voltage of a dual work function gate Schottky barrier MOSFET
verfasst von
Prashanth Kumar
Brinda Bhowmick
Publikationsdatum
05.06.2017
Verlag
Springer US
Erschienen in
Journal of Computational Electronics / Ausgabe 3/2017
Print ISSN: 1569-8025
Elektronische ISSN: 1572-8137
DOI
https://doi.org/10.1007/s10825-017-1011-x

Weitere Artikel der Ausgabe 3/2017

Journal of Computational Electronics 3/2017 Zur Ausgabe

Neuer Inhalt