Skip to main content
Erschienen in: Cognitive Neurodynamics 1/2021

30.07.2020 | Research Article

A brain-inspired compact cognitive mapping system

verfasst von: Taiping Zeng, Bailu Si

Erschienen in: Cognitive Neurodynamics | Ausgabe 1/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In many simultaneous localization and mapping (SLAM) systems, the map of the environment grows over time as the robot explores the environment. The ever-growing map prevents long-term mapping, especially in large-scale environments. In this paper, we develop a compact cognitive mapping approach inspired by neurobiological experiments. Mimicking the firing activities of neighborhood cells, neighborhood fields determined by movement information, i.e. translation and rotation, are modeled to describe one of the distinct segments of the explored environment. The vertices with low neighborhood field activities are avoided to be added into the cognitive map. The optimization of the cognitive map is formulated as a robust non-linear least squares problem constrained by the transitions between vertices, and is numerically solved efficiently. According to the cognitive decision-making of place familiarity, loop closure edges are clustered depending on time intervals, and then batch global optimization of the cognitive map is performed to satisfy the combined constraint of the whole cluster. After the loop closure process, scene integration is performed, in which revisited vertices are removed subsequently to further reduce the size of the cognitive map. The compact cognitive mapping approach is tested on a monocular visual SLAM system in a naturalistic maze for a biomimetic animated robot. Our results demonstrate that the proposed method largely restricts the growth of the size of the cognitive map over time, and meanwhile, the compact cognitive map correctly represents the overall layout of the environment. The compact cognitive mapping method is well suitable for the representation of large-scale environments to achieve long-term robot navigation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Ball D, Heath S, Wyeth G, Wiles J (2010) IRat: Intelligent rat animat technology. In: Proceedings of the 2010 Australasian conference on robotics and automation, pp 1–3 Ball D, Heath S, Wyeth G, Wiles J (2010) IRat: Intelligent rat animat technology. In: Proceedings of the 2010 Australasian conference on robotics and automation, pp 1–3
Zurück zum Zitat Ball D, Heath S, Wiles J, Wyeth G, Corke P, Milford M (2013) OpenRatSLAM: an open source brain-based SLAM system. Autonomous Robots 34(3):149–176CrossRef Ball D, Heath S, Wiles J, Wyeth G, Corke P, Milford M (2013) OpenRatSLAM: an open source brain-based SLAM system. Autonomous Robots 34(3):149–176CrossRef
Zurück zum Zitat Bos JJ, Vinck M, van Mourik-Donga LA, Jackson JC, Witter MP, Pennartz CM (2017) Perirhinal firing patterns are sustained across large spatial segments of the task environment. Nat Commun 8:15602CrossRef Bos JJ, Vinck M, van Mourik-Donga LA, Jackson JC, Witter MP, Pennartz CM (2017) Perirhinal firing patterns are sustained across large spatial segments of the task environment. Nat Commun 8:15602CrossRef
Zurück zum Zitat Cadena C, Carlone L, Carrillo H, Latif Y, Scaramuzza D, Neira J, Reid I, Leonard JJ (2016) Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans Robot 32(6):1309–1332CrossRef Cadena C, Carlone L, Carrillo H, Latif Y, Scaramuzza D, Neira J, Reid I, Leonard JJ (2016) Past, present, and future of simultaneous localization and mapping: toward the robust-perception age. IEEE Trans Robot 32(6):1309–1332CrossRef
Zurück zum Zitat Carlevaris-Bianco N, Eustice RM (2013) Generic factor-based node marginalization and edge sparsification for pose-graph slam. In: 2013 IEEE international conference on robotics and automation (ICRA), IEEE, pp 5748–5755 Carlevaris-Bianco N, Eustice RM (2013) Generic factor-based node marginalization and edge sparsification for pose-graph slam. In: 2013 IEEE international conference on robotics and automation (ICRA), IEEE, pp 5748–5755
Zurück zum Zitat Carr MF, Jadhav SP, Frank LM (2011) Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat Neurosci 14(2):147–153CrossRef Carr MF, Jadhav SP, Frank LM (2011) Hippocampal replay in the awake state: a potential substrate for memory consolidation and retrieval. Nat Neurosci 14(2):147–153CrossRef
Zurück zum Zitat Eichenbaum H (2014) Time cells in the hippocampus: a new dimension for mapping memories. Nat Rev Neurosci 15(11):732–744CrossRef Eichenbaum H (2014) Time cells in the hippocampus: a new dimension for mapping memories. Nat Rev Neurosci 15(11):732–744CrossRef
Zurück zum Zitat Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052):801–806CrossRef Hafting T, Fyhn M, Molden S, Moser MB, Moser EI (2005) Microstructure of a spatial map in the entorhinal cortex. Nature 436(7052):801–806CrossRef
Zurück zum Zitat Ila V, Porta JM, Andrade-Cetto J (2010) Information-based compact pose slam. IEEE Trans Robot 26(1):78–93CrossRef Ila V, Porta JM, Andrade-Cetto J (2010) Information-based compact pose slam. IEEE Trans Robot 26(1):78–93CrossRef
Zurück zum Zitat Johannsson H, Kaess M, Fallon M, Leonard JJ (2013) Temporally scalable visual slam using a reduced pose graph. In: 2013 IEEE international conference on robotics and automation (ICRA), IEEE, pp 54–61 Johannsson H, Kaess M, Fallon M, Leonard JJ (2013) Temporally scalable visual slam using a reduced pose graph. In: 2013 IEEE international conference on robotics and automation (ICRA), IEEE, pp 54–61
Zurück zum Zitat Kretzschmar H, Stachniss C (2012) Information-theoretic compression of pose graphs for laser-based slam. Int J Robot Res 31(11):1219–1230CrossRef Kretzschmar H, Stachniss C (2012) Information-theoretic compression of pose graphs for laser-based slam. Int J Robot Res 31(11):1219–1230CrossRef
Zurück zum Zitat Kropff E, Carmichael JE, Moser MB, Moser EI (2015) Speed cells in the medial entorhinal cortex. Nature 523(7561):419–424CrossRef Kropff E, Carmichael JE, Moser MB, Moser EI (2015) Speed cells in the medial entorhinal cortex. Nature 523(7561):419–424CrossRef
Zurück zum Zitat Kümmerle R, Grisetti G, Strasdat H, Konolige K, Burgard W (2011) g 2 o: A general framework for graph optimization. In: 2011 IEEE international conference on robotics and automation (ICRA), IEEE, pp 3607–3613 Kümmerle R, Grisetti G, Strasdat H, Konolige K, Burgard W (2011) g 2 o: A general framework for graph optimization. In: 2011 IEEE international conference on robotics and automation (ICRA), IEEE, pp 3607–3613
Zurück zum Zitat Larkin MC, Lykken C, Tye LD, Wickelgren JG, Frank LM (2014) Hippocampal output area ca1 broadcasts a generalized novelty signal during an object-place recognition task. Hippocampus 24(7):773–783CrossRef Larkin MC, Lykken C, Tye LD, Wickelgren JG, Frank LM (2014) Hippocampal output area ca1 broadcasts a generalized novelty signal during an object-place recognition task. Hippocampus 24(7):773–783CrossRef
Zurück zum Zitat Lever C, Burton S, Jeewajee A, O’Keefe J, Burgess N (2009) Boundary vector cells in the subiculum of the hippocampal formation. J Neurosci 29(31):9771–9777CrossRef Lever C, Burton S, Jeewajee A, O’Keefe J, Burgess N (2009) Boundary vector cells in the subiculum of the hippocampal formation. J Neurosci 29(31):9771–9777CrossRef
Zurück zum Zitat Lu F, Milios E (1997) Globally consistent range scan alignment for environment mapping. Auton Robot 4(4):333–349CrossRef Lu F, Milios E (1997) Globally consistent range scan alignment for environment mapping. Auton Robot 4(4):333–349CrossRef
Zurück zum Zitat MacDonald CJ, Lepage KQ, Eden UT, Eichenbaum H (2011) Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron 71(4):737–749CrossRef MacDonald CJ, Lepage KQ, Eden UT, Eichenbaum H (2011) Hippocampal “time cells” bridge the gap in memory for discontiguous events. Neuron 71(4):737–749CrossRef
Zurück zum Zitat Mazuran M, Burgard W, Tipaldi GD (2016) Nonlinear factor recovery for long-term slam. Int J Robot Res 35(1–3):50–72CrossRef Mazuran M, Burgard W, Tipaldi GD (2016) Nonlinear factor recovery for long-term slam. Int J Robot Res 35(1–3):50–72CrossRef
Zurück zum Zitat McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB (2006) Path integration and the neural basis of the ’cognitive map’. Nat Rev Neurosci 7(8):663–678CrossRef McNaughton BL, Battaglia FP, Jensen O, Moser EI, Moser MB (2006) Path integration and the neural basis of the ’cognitive map’. Nat Rev Neurosci 7(8):663–678CrossRef
Zurück zum Zitat Milford M, Wyeth G (2010) Persistent navigation and mapping using a biologically inspired slam system. Int J Robot Res 29(9):1131–1153CrossRef Milford M, Wyeth G (2010) Persistent navigation and mapping using a biologically inspired slam system. Int J Robot Res 29(9):1131–1153CrossRef
Zurück zum Zitat Mittelstaedt ML, Mittelstaedt H (1980) Homing by path integration in a mammal. Naturwissenschaften 67(11):566–567CrossRef Mittelstaedt ML, Mittelstaedt H (1980) Homing by path integration in a mammal. Naturwissenschaften 67(11):566–567CrossRef
Zurück zum Zitat Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain’s spatial representation system. Ann Rev Neurosci 31:69–89CrossRef Moser EI, Kropff E, Moser MB (2008) Place cells, grid cells, and the brain’s spatial representation system. Ann Rev Neurosci 31:69–89CrossRef
Zurück zum Zitat Moser MB, Rowland DC, Moser EI (2015) Place cells, grid cells, and memory. Cold Spring Harbor Perspect Biol 7(2):a021808CrossRef Moser MB, Rowland DC, Moser EI (2015) Place cells, grid cells, and memory. Cold Spring Harbor Perspect Biol 7(2):a021808CrossRef
Zurück zum Zitat Naidoo R, Chase MJ, Beytell P, Du Preez P, Landen K, Stuart-Hill G, Taylor R (2016) A newly discovered wildlife migration in Namibia and Botswana is the longest in Africa. Oryx 50(1):138–146CrossRef Naidoo R, Chase MJ, Beytell P, Du Preez P, Landen K, Stuart-Hill G, Taylor R (2016) A newly discovered wildlife migration in Namibia and Botswana is the longest in Africa. Oryx 50(1):138–146CrossRef
Zurück zum Zitat O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain research 34(1):171–175 O’Keefe J, Dostrovsky J (1971) The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain research 34(1):171–175
Zurück zum Zitat Taube JS, Muller RU, Ranck JB (1990) Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci 10(2):420–435CrossRef Taube JS, Muller RU, Ranck JB (1990) Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. J Neurosci 10(2):420–435CrossRef
Zurück zum Zitat Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55(4):189CrossRef Tolman EC (1948) Cognitive maps in rats and men. Psychol Rev 55(4):189CrossRef
Zurück zum Zitat Zeng T, Si B (2017) Cognitive mapping based on conjunctive representations of space and movement. Front Neurorobot 11:61CrossRef Zeng T, Si B (2017) Cognitive mapping based on conjunctive representations of space and movement. Front Neurorobot 11:61CrossRef
Zurück zum Zitat Zeng T, Tang F, Ji D, Si B (2020) Neurobayesslam: neurobiologically inspired bayesian integration of multisensory information for robot navigation. Neural Netw Off J Int Neural Netw Soc 126:21–35CrossRef Zeng T, Tang F, Ji D, Si B (2020) Neurobayesslam: neurobiologically inspired bayesian integration of multisensory information for robot navigation. Neural Netw Off J Int Neural Netw Soc 126:21–35CrossRef
Zurück zum Zitat Zhao D, Si B, Tang F (2019) Unsupervised feature learning for visual place recognition in changing environments. In: Proceedings of the 2019 international joint conference on neural networks Zhao D, Si B, Tang F (2019) Unsupervised feature learning for visual place recognition in changing environments. In: Proceedings of the 2019 international joint conference on neural networks
Metadaten
Titel
A brain-inspired compact cognitive mapping system
verfasst von
Taiping Zeng
Bailu Si
Publikationsdatum
30.07.2020
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 1/2021
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-020-09621-6

Weitere Artikel der Ausgabe 1/2021

Cognitive Neurodynamics 1/2021 Zur Ausgabe

Neuer Inhalt