Skip to main content
main-content

Tipp

Weitere Artikel dieser Ausgabe durch Wischen aufrufen

26.04.2021 | Regular Paper | Ausgabe 3/2021

Progress in Artificial Intelligence 3/2021

A chaotic and hybrid gray wolf-whale algorithm for solving continuous optimization problems

Zeitschrift:
Progress in Artificial Intelligence > Ausgabe 3/2021
Autoren:
Kayvan Asghari, Mohammad Masdari, Farhad Soleimanian Gharehchopogh, Rahim Saneifard
Wichtige Hinweise

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Abstract

The gray wolf optimizer (GWO) and the whale optimization algorithm (WOA) are two esteemed optimization algorithms, and their various modified versions are proposed in recent years for different applications. The GWO and WOA simulate the hunting method of gray wolves and humpback whales, respectively. These algorithms have several operators for moving the search agents toward the optimum solution in the search space. But, the GWO and WOA encounter some problems such as falling in local optima and slow convergence. Various proposals have been presented so far to develop innovative and novel meta-heuristic optimization methods. Some of them are based on adding special evolutionary operators or local search steps to existing algorithms. Some others are established based on the combination of previous methods or applying the chaos theory in them. A novel hybrid method defined as chaotic GWO and WOA (CGWW) is proposed in this paper by modifying the WOA, merging it with GWO, and applying the chaotic maps. Also, the chaotic maps have been used in the CGWW algorithm to adjust the movement parameters and initialize the search agents. The combination of different operators of the mentioned algorithms and using the chaotic maps increases the exploration and exploitation power of the proposed algorithm and thus causes to obtain better results. Twenty-three mathematical benchmark functions are used to evaluate the CGWW algorithm. Besides, the proposed algorithm is applied for solving the feature selection problem in intrusion detection systems, which is intrinsically multi-objective. The proposed algorithm finds competitive results in contrast to other well-known meta-heuristic algorithms in most of the experiments. It can avoid local optima and find the global optimum in most cases using its balanced exploration and exploitation ability.

Bitte loggen Sie sich ein, um Zugang zu diesem Inhalt zu erhalten

Sie möchten Zugang zu diesem Inhalt erhalten? Dann informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 58.000 Bücher
  • über 300 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 69.000 Bücher
  • über 500 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Testen Sie jetzt 30 Tage kostenlos.

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 50.000 Bücher
  • über 380 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Umwelt
  • Maschinenbau + Werkstoffe




Testen Sie jetzt 30 Tage kostenlos.

Literatur
Über diesen Artikel

Weitere Artikel der Ausgabe 3/2021

Progress in Artificial Intelligence 3/2021 Zur Ausgabe

Premium Partner