Skip to main content
Erschienen in: International Journal of Mechanics and Materials in Design 4/2023

31.07.2023

A Chebyshev–Ritz solution for size-dependent analysis of the porous microbeams with various boundary conditions

verfasst von: Ngoc-Duong Nguyen, Thien-Nhan Nguyen, Trung-Kien Nguyen, Thuc P. Vo

Erschienen in: International Journal of Mechanics and Materials in Design | Ausgabe 4/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This research proposes a Chebyshev–Ritz solution for analysing the size-dependent behaviour of porous microbeams. The displacement field is based on the higher-order beam theory, while the size-dependent effect is accounted for using the modified couple stress theory. Moreover, porous microbeams’ elasticity moduli and mass density are assumed to be graded in the thickness direction according to four distinct distribution patterns. The open-cell metal foam exemplifies a characteristic mechanical attribute that facilitates the determination of the interrelation between coefficients of density and porosity. To derive the governing equations, the Lagrange’s principle is employed. Four types of boundary conditions, including clamped–clamped, clamped-simply supported, clamped-free, and simply-supported, along with four porosity distribution types of the beam, are considered. The Chebyshev polynomial is developed to analyse the porous microbeams’ buckling, free vibration, and bending. Furthermore, the study discusses the impacts of the material length scale parameter, porosity, slenderness, boundary condition, and porosity type on their mechanical responses. Finally, some novel results are presented, which can serve as benchmarks for future studies.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alwar, R.S., Narasimhan, M.C.: Application of chebyshev polynomials to the analysis of laminated axisymmetric spherical shells. Compos. Struct. 15(3), 215–237 (1990)CrossRef Alwar, R.S., Narasimhan, M.C.: Application of chebyshev polynomials to the analysis of laminated axisymmetric spherical shells. Compos. Struct. 15(3), 215–237 (1990)CrossRef
Zurück zum Zitat Amir, S., Soleimani-Javid, Z., Arshid, E.: Size-dependent free vibration of sandwich micro beam with porous core subjected to thermal load based on SSDBT. ZAMM J. Appl. Math. Mech. Zeitschrift Für Angewandte Mathematik Mechanik 99(9), e201800334 (2019)MathSciNetCrossRef Amir, S., Soleimani-Javid, Z., Arshid, E.: Size-dependent free vibration of sandwich micro beam with porous core subjected to thermal load based on SSDBT. ZAMM J. Appl. Math. Mech. Zeitschrift Für Angewandte Mathematik Mechanik 99(9), e201800334 (2019)MathSciNetCrossRef
Zurück zum Zitat Anirudh, B., Zineb, T.B., Polit, O., Ganapathi, M., Prateek, G.: Nonlinear bending of porous curved beams reinforced by functionally graded nanocomposite graphene platelets applying an efficient shear flexible finite element approach. Int. J. Non-Linear Mech. 119, 103346 (2020)CrossRef Anirudh, B., Zineb, T.B., Polit, O., Ganapathi, M., Prateek, G.: Nonlinear bending of porous curved beams reinforced by functionally graded nanocomposite graphene platelets applying an efficient shear flexible finite element approach. Int. J. Non-Linear Mech. 119, 103346 (2020)CrossRef
Zurück zum Zitat Arshid, E., Arshid, H., Amir, S., Mousavi, S.B.: Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory. Arch. Civ. Mech. Eng. 21(1), 1–23 (2021)CrossRef Arshid, E., Arshid, H., Amir, S., Mousavi, S.B.: Free vibration and buckling analyses of FG porous sandwich curved microbeams in thermal environment under magnetic field based on modified couple stress theory. Arch. Civ. Mech. Eng. 21(1), 1–23 (2021)CrossRef
Zurück zum Zitat Babaei, H., Eslami, M.R.: Nonlinear bending analysis of size-dependent FG porous microtubes in thermal environment based on modified couple stress theory. Mech. Based Des. Struct. Mach. 50(8), 2714–2735 (2020)CrossRef Babaei, H., Eslami, M.R.: Nonlinear bending analysis of size-dependent FG porous microtubes in thermal environment based on modified couple stress theory. Mech. Based Des. Struct. Mach. 50(8), 2714–2735 (2020)CrossRef
Zurück zum Zitat Betts, C.: Benefits of metal foams and developments in modelling techniques to assess their materials behaviour: a review. Mater. Sci. Technol. 28(2), 129–143 (2012)CrossRef Betts, C.: Benefits of metal foams and developments in modelling techniques to assess their materials behaviour: a review. Mater. Sci. Technol. 28(2), 129–143 (2012)CrossRef
Zurück zum Zitat Chen, D., Yang, J., Kitipornchai, S.: Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos. Struct. 133, 54–61 (2015)CrossRef Chen, D., Yang, J., Kitipornchai, S.: Elastic buckling and static bending of shear deformable functionally graded porous beam. Compos. Struct. 133, 54–61 (2015)CrossRef
Zurück zum Zitat Chen, D., Yang, J., Kitipornchai, S.: Free and forced vibrations of shear deformable functionally graded porous beams. Int. J. Mech. Sci. 108, 14–22 (2016)CrossRef Chen, D., Yang, J., Kitipornchai, S.: Free and forced vibrations of shear deformable functionally graded porous beams. Int. J. Mech. Sci. 108, 14–22 (2016)CrossRef
Zurück zum Zitat Chen, D., Zheng, S., Wang, Y., Yang, L., Li, Z.: Nonlinear free vibration analysis of a rotating two-dimensional functionally graded porous micro-beam using isogeometric analysis. Eur. J. Mech. A Solids 84, 104083 (2020)MathSciNetMATHCrossRef Chen, D., Zheng, S., Wang, Y., Yang, L., Li, Z.: Nonlinear free vibration analysis of a rotating two-dimensional functionally graded porous micro-beam using isogeometric analysis. Eur. J. Mech. A Solids 84, 104083 (2020)MathSciNetMATHCrossRef
Zurück zum Zitat Dehsaraji, M.L., Arefi, M., Loghman, A.: Size dependent free vibration analysis of functionally graded piezoelectric micro/nano shell based on modified couple stress theory with considering thickness stretching effect. Def. Technol. 17(1), 119–134 (2021)CrossRef Dehsaraji, M.L., Arefi, M., Loghman, A.: Size dependent free vibration analysis of functionally graded piezoelectric micro/nano shell based on modified couple stress theory with considering thickness stretching effect. Def. Technol. 17(1), 119–134 (2021)CrossRef
Zurück zum Zitat Dong, C.Y.: Three-dimensional free vibration analysis of functionally graded annular plates using the Chebyshev–Ritz method. Mater. Des. 29(8), 1518–1525 (2008)CrossRef Dong, C.Y.: Three-dimensional free vibration analysis of functionally graded annular plates using the Chebyshev–Ritz method. Mater. Des. 29(8), 1518–1525 (2008)CrossRef
Zurück zum Zitat Ebrahimi, F., Barati, M.R., Civalek, Ö.: Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Eng. Comput. 36(3), 953–964 (2020)CrossRef Ebrahimi, F., Barati, M.R., Civalek, Ö.: Application of Chebyshev–Ritz method for static stability and vibration analysis of nonlocal microstructure-dependent nanostructures. Eng. Comput. 36(3), 953–964 (2020)CrossRef
Zurück zum Zitat Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10(5), 425–435 (1972)MATHCrossRef Eringen, A.C.: Linear theory of nonlocal elasticity and dispersion of plane waves. Int. J. Eng. Sci. 10(5), 425–435 (1972)MATHCrossRef
Zurück zum Zitat Esen, I., Abdelrahman, A.A., Eltaher, M.A.: On vibration of sigmoid/symmetric functionally graded nonlocal strain gradient nanobeams under moving load. Int. J. Mech. Mater. Des. 17(3), 721–742 (2021)CrossRef Esen, I., Abdelrahman, A.A., Eltaher, M.A.: On vibration of sigmoid/symmetric functionally graded nonlocal strain gradient nanobeams under moving load. Int. J. Mech. Mater. Des. 17(3), 721–742 (2021)CrossRef
Zurück zum Zitat Fang, W., Yu, T., Bui, T.Q.: Analysis of thick porous beams by a quasi-3D theory and isogeometric analysis. Compos. Struct. 221, 110890 (2019)CrossRef Fang, W., Yu, T., Bui, T.Q.: Analysis of thick porous beams by a quasi-3D theory and isogeometric analysis. Compos. Struct. 221, 110890 (2019)CrossRef
Zurück zum Zitat Fattahi, A., Sahmani, S., Ahmed, N.: Nonlocal strain gradient beam model for nonlinear secondary resonance analysis of functionally graded porous micro/nano-beams under periodic hard excitations. Mech. Based Des. Struct. Mach. 48(4), 403–432 (2019)CrossRef Fattahi, A., Sahmani, S., Ahmed, N.: Nonlocal strain gradient beam model for nonlinear secondary resonance analysis of functionally graded porous micro/nano-beams under periodic hard excitations. Mech. Based Des. Struct. Mach. 48(4), 403–432 (2019)CrossRef
Zurück zum Zitat Fleck, N., Muller, G., Ashby, M., Hutchinson, J.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)CrossRef Fleck, N., Muller, G., Ashby, M., Hutchinson, J.: Strain gradient plasticity: theory and experiment. Acta Metall. Mater. 42(2), 475–487 (1994)CrossRef
Zurück zum Zitat Fox, L. and I.B. Parker, Chebyshev polynomials in numerical analysis. 1968. Fox, L. and I.B. Parker, Chebyshev polynomials in numerical analysis. 1968.
Zurück zum Zitat Gao, K., Li, R., Yang, J.: Dynamic characteristics of functionally graded porous beams with interval material properties. Eng. Struct. 197, 109441 (2019)CrossRef Gao, K., Li, R., Yang, J.: Dynamic characteristics of functionally graded porous beams with interval material properties. Eng. Struct. 197, 109441 (2019)CrossRef
Zurück zum Zitat Gimon-Kinsel, M.E., Balkus, K.J., Jr.: Pulsed laser deposition of mesoporous niobium oxide thin films and application as chemical sensors. Microporous Mesoporous Mater. 28(1), 113–123 (1999)CrossRef Gimon-Kinsel, M.E., Balkus, K.J., Jr.: Pulsed laser deposition of mesoporous niobium oxide thin films and application as chemical sensors. Microporous Mesoporous Mater. 28(1), 113–123 (1999)CrossRef
Zurück zum Zitat Ilanko, S., Monterrubio, L., Mochida, Y.: The Rayleigh-Ritz method for structural analysis. Wiley (2014)MATHCrossRef Ilanko, S., Monterrubio, L., Mochida, Y.: The Rayleigh-Ritz method for structural analysis. Wiley (2014)MATHCrossRef
Zurück zum Zitat Jamshidi, M., Arghavani, J.: Optimal material tailoring of functionally graded porous beams for buckling and free vibration behaviors. Mech. Res. Commun. 88, 19–24 (2018)CrossRef Jamshidi, M., Arghavani, J.: Optimal material tailoring of functionally graded porous beams for buckling and free vibration behaviors. Mech. Res. Commun. 88, 19–24 (2018)CrossRef
Zurück zum Zitat Jena, S.K., Chakraverty, S., Malikan, M.: Application of shifted Chebyshev polynomial-based Rayleigh-Ritz method and Navier’s technique for vibration analysis of a functionally graded porous beam embedded in Kerr foundation. Eng. Comput. 37(4), 3569–3589 (2021)CrossRef Jena, S.K., Chakraverty, S., Malikan, M.: Application of shifted Chebyshev polynomial-based Rayleigh-Ritz method and Navier’s technique for vibration analysis of a functionally graded porous beam embedded in Kerr foundation. Eng. Comput. 37(4), 3569–3589 (2021)CrossRef
Zurück zum Zitat Karamanli, A., Vo, T.P.: A quasi-3D theory for functionally graded porous microbeams based on the modified strain gradient theory. Compos. Struct. 257, 113066 (2021a)CrossRef Karamanli, A., Vo, T.P.: A quasi-3D theory for functionally graded porous microbeams based on the modified strain gradient theory. Compos. Struct. 257, 113066 (2021a)CrossRef
Zurück zum Zitat Karamanli, A., Vo, T.P.: Bending, vibration, buckling analysis of bi-directional FG porous microbeams with a variable material length scale parameter. Appl. Math. Model. 91, 723–748 (2021b)MathSciNetMATHCrossRef Karamanli, A., Vo, T.P.: Bending, vibration, buckling analysis of bi-directional FG porous microbeams with a variable material length scale parameter. Appl. Math. Model. 91, 723–748 (2021b)MathSciNetMATHCrossRef
Zurück zum Zitat Karamanli, A., Vo, T.P., Civalek, O.: Finite element formulation of metal foam microbeams via modified strain gradient theory. Eng. Comput. 39(1), 751–772 (2022)CrossRef Karamanli, A., Vo, T.P., Civalek, O.: Finite element formulation of metal foam microbeams via modified strain gradient theory. Eng. Comput. 39(1), 751–772 (2022)CrossRef
Zurück zum Zitat Khorshidi, M.A.: Effect of nano-porosity on postbuckling of non-uniform microbeams. SN Appl. Sci. 1(7), 1–9 (2019) Khorshidi, M.A.: Effect of nano-porosity on postbuckling of non-uniform microbeams. SN Appl. Sci. 1(7), 1–9 (2019)
Zurück zum Zitat Koiter, W., Couple-stresses in the theory of elasticity, I & II. (1969). Koiter, W., Couple-stresses in the theory of elasticity, I & II. (1969).
Zurück zum Zitat Lam, D.C., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)MATHCrossRef Lam, D.C., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51(8), 1477–1508 (2003)MATHCrossRef
Zurück zum Zitat Lefebvre, L.P., Banhart, J., Dunand, D.C.: Porous metals and metallic foams: current status and recent developments. Adv. Eng. Mater. 10(9), 775–787 (2008)CrossRef Lefebvre, L.P., Banhart, J., Dunand, D.C.: Porous metals and metallic foams: current status and recent developments. Adv. Eng. Mater. 10(9), 775–787 (2008)CrossRef
Zurück zum Zitat Li, L., Tang, H., Hu, Y.: Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature. Compos. Struct. 184, 1177–1188 (2018)CrossRef Li, L., Tang, H., Hu, Y.: Size-dependent nonlinear vibration of beam-type porous materials with an initial geometrical curvature. Compos. Struct. 184, 1177–1188 (2018)CrossRef
Zurück zum Zitat Lu, Z.-Q., Gu, D.-H., Ding, H., Lacarbonara, W., Chen, L.-Q.: Nonlinear vibration isolation via a circular ring. Mech. Syst. Signal Process. 136, 106490 (2020)CrossRef Lu, Z.-Q., Gu, D.-H., Ding, H., Lacarbonara, W., Chen, L.-Q.: Nonlinear vibration isolation via a circular ring. Mech. Syst. Signal Process. 136, 106490 (2020)CrossRef
Zurück zum Zitat Mantari, J., Canales, F.: Free vibration and buckling of laminated beams via hybrid Ritz solution for various penalized boundary conditions. Compos. Struct. 152, 306–315 (2016)CrossRef Mantari, J., Canales, F.: Free vibration and buckling of laminated beams via hybrid Ritz solution for various penalized boundary conditions. Compos. Struct. 152, 306–315 (2016)CrossRef
Zurück zum Zitat Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)CrossRef Mindlin, R.D.: Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct. 1(4), 417–438 (1965)CrossRef
Zurück zum Zitat Mindlin, R., Tiersten, H.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962)MathSciNetMATHCrossRef Mindlin, R., Tiersten, H.: Effects of couple-stresses in linear elasticity. Arch. Ration. Mech. Anal. 11(1), 415–448 (1962)MathSciNetMATHCrossRef
Zurück zum Zitat Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S., Afshari, M.B.: Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam. J. Therm. Stress. 40(10), 1201–1214 (2017)CrossRef Mirjavadi, S.S., Matin, A., Shafiei, N., Rabby, S., Afshari, M.B.: Thermal buckling behavior of two-dimensional imperfect functionally graded microscale-tapered porous beam. J. Therm. Stress. 40(10), 1201–1214 (2017)CrossRef
Zurück zum Zitat Mirjavadi, S.S., Afshari, M.B., Shafiei, N., Rabby, S., Kazemi, M.: Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam. J. Vibr. Control 24(18), 4211–4225 (2018)MathSciNetCrossRef Mirjavadi, S.S., Afshari, M.B., Shafiei, N., Rabby, S., Kazemi, M.: Effect of temperature and porosity on the vibration behavior of two-dimensional functionally graded micro-scale Timoshenko beam. J. Vibr. Control 24(18), 4211–4225 (2018)MathSciNetCrossRef
Zurück zum Zitat Montemurro, M., Bertolino, G., Panettieri, E.: Topology optimisation of architected cellular materials from additive manufacturing: analysis, design, and experiments. Structures 47, 2220–2239 (2023)CrossRef Montemurro, M., Bertolino, G., Panettieri, E.: Topology optimisation of architected cellular materials from additive manufacturing: analysis, design, and experiments. Structures 47, 2220–2239 (2023)CrossRef
Zurück zum Zitat Moreno-García, P., dos Santos, J.V.A., Lopes, H.: A review and study on Ritz method admissible functions with emphasis on buckling and free vibration of isotropic and anisotropic beams and plates. Arch. Comput. Methods Eng. 25(3), 785–815 (2018)MathSciNetMATHCrossRef Moreno-García, P., dos Santos, J.V.A., Lopes, H.: A review and study on Ritz method admissible functions with emphasis on buckling and free vibration of isotropic and anisotropic beams and plates. Arch. Comput. Methods Eng. 25(3), 785–815 (2018)MathSciNetMATHCrossRef
Zurück zum Zitat Nan, Z., Xie, Z., Shijie, Z., Dejin, C.: Size-dependent static bending and free vibration analysis of porous functionally graded piezoelectric nanobeams. Smart Mater. Struct. 29(4), 045025 (2020)CrossRef Nan, Z., Xie, Z., Shijie, Z., Dejin, C.: Size-dependent static bending and free vibration analysis of porous functionally graded piezoelectric nanobeams. Smart Mater. Struct. 29(4), 045025 (2020)CrossRef
Zurück zum Zitat Nguyen, T.K., Nguyen, T.T.P., Vo, T.P., Thai, H.T.: Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory. Compos. Part B Eng. 76, 273–285 (2015)CrossRef Nguyen, T.K., Nguyen, T.T.P., Vo, T.P., Thai, H.T.: Vibration and buckling analysis of functionally graded sandwich beams by a new higher-order shear deformation theory. Compos. Part B Eng. 76, 273–285 (2015)CrossRef
Zurück zum Zitat Nguyen, N.-D., Nguyen, T.-N., Nguyen, T.-K., Vo, T.P.: A new two-variable shear deformation theory for bending, free vibration and buckling analysis of functionally graded porous beams. Compos. Struct. 282, 115095 (2022)CrossRef Nguyen, N.-D., Nguyen, T.-N., Nguyen, T.-K., Vo, T.P.: A new two-variable shear deformation theory for bending, free vibration and buckling analysis of functionally graded porous beams. Compos. Struct. 282, 115095 (2022)CrossRef
Zurück zum Zitat Nguyen, N.-D., Nguyen, T.-N., Nguyen, T.-K., Vo, T.P.: A Legendre-Ritz solution for bending, buckling and free vibration behaviours of porous beams resting on the elastic foundation. Structures 50, 1934–1950 (2023)CrossRef Nguyen, N.-D., Nguyen, T.-N., Nguyen, T.-K., Vo, T.P.: A Legendre-Ritz solution for bending, buckling and free vibration behaviours of porous beams resting on the elastic foundation. Structures 50, 1934–1950 (2023)CrossRef
Zurück zum Zitat Ramteke, P.M., Panda, S.K.: Computational modelling and experimental challenges of linear and nonlinear analysis of porous graded structure: a comprehensive review. Arch. Comput. Methods Eng. 30, 3437–3452 (2023)CrossRef Ramteke, P.M., Panda, S.K.: Computational modelling and experimental challenges of linear and nonlinear analysis of porous graded structure: a comprehensive review. Arch. Comput. Methods Eng. 30, 3437–3452 (2023)CrossRef
Zurück zum Zitat Reddy, J.: A general non-linear third-order theory of plates with moderate thickness. Int. J. Non-Linear Mech. 25(6), 677–686 (1990)MATHCrossRef Reddy, J.: A general non-linear third-order theory of plates with moderate thickness. Int. J. Non-Linear Mech. 25(6), 677–686 (1990)MATHCrossRef
Zurück zum Zitat Reddy, J.N.: Mechanics of laminated composite plates and shells: theory and analysis. CRC Press (2004)MATH Reddy, J.N.: Mechanics of laminated composite plates and shells: theory and analysis. CRC Press (2004)MATH
Zurück zum Zitat Sahmani, S., Aghdam, M.M., Rabczuk, T.: Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory. Compos. Struct. 186, 68–78 (2018)CrossRef Sahmani, S., Aghdam, M.M., Rabczuk, T.: Nonlinear bending of functionally graded porous micro/nano-beams reinforced with graphene platelets based upon nonlocal strain gradient theory. Compos. Struct. 186, 68–78 (2018)CrossRef
Zurück zum Zitat Shafiei, N., Kazemi, M.: Nonlinear buckling of functionally graded nano-/micro-scaled porous beams. Compos. Struct. 178, 483–492 (2017a)CrossRef Shafiei, N., Kazemi, M.: Nonlinear buckling of functionally graded nano-/micro-scaled porous beams. Compos. Struct. 178, 483–492 (2017a)CrossRef
Zurück zum Zitat Shafiei, N., Kazemi, M.: Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/micro-scale beams. Aerosp. Sci. Technol. 66, 1–11 (2017b)CrossRef Shafiei, N., Kazemi, M.: Buckling analysis on the bi-dimensional functionally graded porous tapered nano-/micro-scale beams. Aerosp. Sci. Technol. 66, 1–11 (2017b)CrossRef
Zurück zum Zitat Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S., Kazemi, M.: Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams. Comput. Methods Appl. Mech. Eng. 322, 615–632 (2017)MathSciNetMATHCrossRef Shafiei, N., Mirjavadi, S.S., MohaselAfshari, B., Rabby, S., Kazemi, M.: Vibration of two-dimensional imperfect functionally graded (2D-FG) porous nano-/micro-beams. Comput. Methods Appl. Mech. Eng. 322, 615–632 (2017)MathSciNetMATHCrossRef
Zurück zum Zitat Şimşek, M.: Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nucl. Eng. Des. 240(4), 697–705 (2010)CrossRef Şimşek, M.: Fundamental frequency analysis of functionally graded beams by using different higher-order beam theories. Nucl. Eng. Des. 240(4), 697–705 (2010)CrossRef
Zurück zum Zitat Tang, H., Li, L., Hu, Y.: Coupling effect of thickness and shear deformation on size-dependent bending of micro/nano-scale porous beams. Appl. Math. Model. 66, 527–547 (2019)MathSciNetMATHCrossRef Tang, H., Li, L., Hu, Y.: Coupling effect of thickness and shear deformation on size-dependent bending of micro/nano-scale porous beams. Appl. Math. Model. 66, 527–547 (2019)MathSciNetMATHCrossRef
Zurück zum Zitat Thai, H.-T., Vo, T.P., Nguyen, T.-K., Kim, S.-E.: A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos. Struct. 177, 196–219 (2017)CrossRef Thai, H.-T., Vo, T.P., Nguyen, T.-K., Kim, S.-E.: A review of continuum mechanics models for size-dependent analysis of beams and plates. Compos. Struct. 177, 196–219 (2017)CrossRef
Zurück zum Zitat Tian, L.-M., Li, M.-H., Li, L., Li, D.-Y., Bai, C.: Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios. Thin Wall. Struct. 182, 110219 (2023)CrossRef Tian, L.-M., Li, M.-H., Li, L., Li, D.-Y., Bai, C.: Novel joint for improving the collapse resistance of steel frame structures in column-loss scenarios. Thin Wall. Struct. 182, 110219 (2023)CrossRef
Zurück zum Zitat Tong, L.H., Wen, B., Xiang, Y., Lei, Z.X., Lim, C.W.: Elastic buckling of nanoplates based on general third-order shear deformable plate theory including both size effects and surface effects. Int. J. Mech. Mater. Des. 17(3), 521–543 (2021)CrossRef Tong, L.H., Wen, B., Xiang, Y., Lei, Z.X., Lim, C.W.: Elastic buckling of nanoplates based on general third-order shear deformable plate theory including both size effects and surface effects. Int. J. Mech. Mater. Des. 17(3), 521–543 (2021)CrossRef
Zurück zum Zitat Uymaz, B., Aydogdu, M.: Three-dimensional vibration analyses of functionally graded plates under various boundary conditions. J. Reinf. Plast. Compos. 26(18), 1847–1863 (2007)CrossRef Uymaz, B., Aydogdu, M.: Three-dimensional vibration analyses of functionally graded plates under various boundary conditions. J. Reinf. Plast. Compos. 26(18), 1847–1863 (2007)CrossRef
Zurück zum Zitat Wang, Y.Q., Zhao, H.L., Ye, C., Zu, J.W.: A porous microbeam model for bending and vibration analysis based on the sinusoidal beam theory and modified strain gradient theory. Int. J. Appl. Mech. 10(05), 1850059 (2018)CrossRef Wang, Y.Q., Zhao, H.L., Ye, C., Zu, J.W.: A porous microbeam model for bending and vibration analysis based on the sinusoidal beam theory and modified strain gradient theory. Int. J. Appl. Mech. 10(05), 1850059 (2018)CrossRef
Zurück zum Zitat Wattanasakulpong, N., Chaikittiratana, A., Pornpeerakeat, S.: Chebyshev collocation approach for vibration analysis of functionally graded porous beams based on third-order shear deformation theory. Acta. Mech. Sin. 34(6), 1124–1135 (2018)MathSciNetCrossRef Wattanasakulpong, N., Chaikittiratana, A., Pornpeerakeat, S.: Chebyshev collocation approach for vibration analysis of functionally graded porous beams based on third-order shear deformation theory. Acta. Mech. Sin. 34(6), 1124–1135 (2018)MathSciNetCrossRef
Zurück zum Zitat Xiao, W.-S., Gao, Y., Zhu, H.: Buckling and post-buckling of magneto-electro-thermo-elastic functionally graded porous nanobeams. Microsyst. Technol. 25(6), 2451–2470 (2019)CrossRef Xiao, W.-S., Gao, Y., Zhu, H.: Buckling and post-buckling of magneto-electro-thermo-elastic functionally graded porous nanobeams. Microsyst. Technol. 25(6), 2451–2470 (2019)CrossRef
Zurück zum Zitat Xiao, X., Zhang, Q., Zheng, J., Li, Z.: Analytical model for the nonlinear buckling responses of the confined polyhedral FGP-GPLs lining subjected to crown point loading. Eng. Struct. 282, 115780 (2023)CrossRef Xiao, X., Zhang, Q., Zheng, J., Li, Z.: Analytical model for the nonlinear buckling responses of the confined polyhedral FGP-GPLs lining subjected to crown point loading. Eng. Struct. 282, 115780 (2023)CrossRef
Zurück zum Zitat Yang, J., Lakes, R.: Experimental study of micropolar and couple stress elasticity in compact bone in bending. J. Biomech. 15(2), 91–98 (1982)CrossRef Yang, J., Lakes, R.: Experimental study of micropolar and couple stress elasticity in compact bone in bending. J. Biomech. 15(2), 91–98 (1982)CrossRef
Zurück zum Zitat Yang, F., Chong, A., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)MATHCrossRef Yang, F., Chong, A., Lam, D.C.C., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39(10), 2731–2743 (2002)MATHCrossRef
Zurück zum Zitat Yang, K., Qin, N., Yu, H., Zhou, C., Deng, H., Tian, W., Cai, S., Wu, Z., Guan, J.: Correlating multi-scale structure characteristics to mechanical behavior of Caprinae horn sheaths. J. Market. Res. 21, 2191–2202 (2022a) Yang, K., Qin, N., Yu, H., Zhou, C., Deng, H., Tian, W., Cai, S., Wu, Z., Guan, J.: Correlating multi-scale structure characteristics to mechanical behavior of Caprinae horn sheaths. J. Market. Res. 21, 2191–2202 (2022a)
Zurück zum Zitat Yang, N., Moradi, Z., Khadimallah, M.A., Arvin, H.: Application of the Chebyshev–Ritz route in determination of the dynamic instability region boundary for rotating nanocomposite beams reinforced with graphene platelet subjected to a temperature increment. Eng. Anal. Bound. Elem. 139, 169–179 (2022b)MathSciNetMATHCrossRef Yang, N., Moradi, Z., Khadimallah, M.A., Arvin, H.: Application of the Chebyshev–Ritz route in determination of the dynamic instability region boundary for rotating nanocomposite beams reinforced with graphene platelet subjected to a temperature increment. Eng. Anal. Bound. Elem. 139, 169–179 (2022b)MathSciNetMATHCrossRef
Zurück zum Zitat Ye, C., Wang, Y.Q.: On the use of Chebyshev polynomials in the Rayleigh-Ritz method for vibration and buckling analyses of circular cylindrical three-dimensional graphene foam shells. Mech. Based Des. Struct. Mach. 49(7), 932–946 (2021)CrossRef Ye, C., Wang, Y.Q.: On the use of Chebyshev polynomials in the Rayleigh-Ritz method for vibration and buckling analyses of circular cylindrical three-dimensional graphene foam shells. Mech. Based Des. Struct. Mach. 49(7), 932–946 (2021)CrossRef
Zurück zum Zitat Zhang, Y., Liu, G., Ye, J., Lin, Y.: Crushing and parametric studies of polygonal substructures based hierarchical cellular honeycombs with non-uniform wall thickness. Compos. Struct. 299, 116087 (2022a)CrossRef Zhang, Y., Liu, G., Ye, J., Lin, Y.: Crushing and parametric studies of polygonal substructures based hierarchical cellular honeycombs with non-uniform wall thickness. Compos. Struct. 299, 116087 (2022a)CrossRef
Zurück zum Zitat Zhang, H., Ouyang, Z., Li, L., Ma, W., Liu, Y., Chen, F., Xiao, X.: Numerical study on welding residual stress distribution of corrugated steel webs. Metals 12(11), 1831 (2022b)CrossRef Zhang, H., Ouyang, Z., Li, L., Ma, W., Liu, Y., Chen, F., Xiao, X.: Numerical study on welding residual stress distribution of corrugated steel webs. Metals 12(11), 1831 (2022b)CrossRef
Zurück zum Zitat Zhou, D.: Three-dimensional vibration analysis of structural elements using Chebyshev–Ritz method, vol. 273. Science Press, Beijing (2007) Zhou, D.: Three-dimensional vibration analysis of structural elements using Chebyshev–Ritz method, vol. 273. Science Press, Beijing (2007)
Zurück zum Zitat Zhou, D., Cheung, Y.K., Au, F.T.K., Lo, S.H.: Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method. Int. J. Solids Struct. 39(26), 6339–6353 (2002)MATHCrossRef Zhou, D., Cheung, Y.K., Au, F.T.K., Lo, S.H.: Three-dimensional vibration analysis of thick rectangular plates using Chebyshev polynomial and Ritz method. Int. J. Solids Struct. 39(26), 6339–6353 (2002)MATHCrossRef
Zurück zum Zitat Zhou, D., Cheung, Y.K., Lo, S.H., Au, F.T.K.: 3D vibration analysis of solid and hollow circular cylinders via Chebyshev–Ritz method. Comput. Methods Appl. Mech. Eng. 192(13–14), 1575–1589 (2003)MATHCrossRef Zhou, D., Cheung, Y.K., Lo, S.H., Au, F.T.K.: 3D vibration analysis of solid and hollow circular cylinders via Chebyshev–Ritz method. Comput. Methods Appl. Mech. Eng. 192(13–14), 1575–1589 (2003)MATHCrossRef
Zurück zum Zitat Zhou, D., Lo, S.H., Au, F.T.K., Cheung, Y.K., Liu, W.Q.: 3-D vibration analysis of skew thick plates using Chebyshev–Ritz method. Int. J. Mech. Sci. 48(12), 1481–1493 (2006)MATHCrossRef Zhou, D., Lo, S.H., Au, F.T.K., Cheung, Y.K., Liu, W.Q.: 3-D vibration analysis of skew thick plates using Chebyshev–Ritz method. Int. J. Mech. Sci. 48(12), 1481–1493 (2006)MATHCrossRef
Zurück zum Zitat Zhou, D., Lo, S.H., Cheung, Y.K.: 3-D vibration analysis of annular sector plates using the Chebyshev–Ritz method. J. Sound Vib. 320(1–2), 421–437 (2009)CrossRef Zhou, D., Lo, S.H., Cheung, Y.K.: 3-D vibration analysis of annular sector plates using the Chebyshev–Ritz method. J. Sound Vib. 320(1–2), 421–437 (2009)CrossRef
Metadaten
Titel
A Chebyshev–Ritz solution for size-dependent analysis of the porous microbeams with various boundary conditions
verfasst von
Ngoc-Duong Nguyen
Thien-Nhan Nguyen
Trung-Kien Nguyen
Thuc P. Vo
Publikationsdatum
31.07.2023
Verlag
Springer Netherlands
Erschienen in
International Journal of Mechanics and Materials in Design / Ausgabe 4/2023
Print ISSN: 1569-1713
Elektronische ISSN: 1573-8841
DOI
https://doi.org/10.1007/s10999-023-09666-5

Weitere Artikel der Ausgabe 4/2023

International Journal of Mechanics and Materials in Design 4/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.