Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 11/2019

04.11.2019

A Comparative Analysis on Microstructure and Fracture Mechanism of X100 Pipeline Steel CGHAZ Between Laser Welding and Arc Welding

verfasst von: Xiaonan Qi, Hongshuang Di, Qian Sun, Xiaonan Wang, Xiaming Chen, Yuan Gao, Zhenguang Liu

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 11/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The objective of this study is to compare and contrast the differences in microstructure and fracture mechanism between CGHAZ of laser welding and submerged arc welding in X100 pipeline steel. The single-pass welding thermal simulation test of laser welding and submerged arc welding was carried out in MMS-200 thermal simulation test machine using self-made fixtures. The results indicated that the microstructure of laser welding CGHAZ and submerged arc welding CGHAZ was lath martensite and granular bainite, respectively. The impact energy of laser welding CGHAZ was 27 J, and the fracture mode was ductile fracture; the impact energy of submerged arc welding CGHAZ was 7.7 J, and the fracture mode was brittle fracture. The nucleation and propagation mechanism of cracks in different welding modes was established. Microcracks nucleated at the position of dislocation accumulation and remained austenite suppressed crack nucleation in laser welding CGHAZ. The nucleation site was at the M–A constituents in submerged arc welding CGHAZ. The main crack of laser welding CGHAZ was formed by one or a small number of microcracks. The main crack in submerged arc welding CGHAZ was formed by a large number of microcracks. The difference between crack nucleation and propagation mechanism is the reason why the impact energy of laser welding CGHAZ is higher than of submerged arc welding CGHAZ.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat S.K. Sharma and S. Maheshwari, A Review on Welding of High Strength Oil and Gas Pipeline Steels, J. Nat. Gas. Sci. Eng., 2016, 38, p 203–217CrossRef S.K. Sharma and S. Maheshwari, A Review on Welding of High Strength Oil and Gas Pipeline Steels, J. Nat. Gas. Sci. Eng., 2016, 38, p 203–217CrossRef
2.
Zurück zum Zitat M.C. Zhao, K. Yang, and Y.Y. Shan, The Effects of Thermo-Mechanical Control Process on Microstructures and Mechanical Properties of a Commercial Pipeline Steel, Mater. Sci. Eng. A, 2002, 335, p 14–20CrossRef M.C. Zhao, K. Yang, and Y.Y. Shan, The Effects of Thermo-Mechanical Control Process on Microstructures and Mechanical Properties of a Commercial Pipeline Steel, Mater. Sci. Eng. A, 2002, 335, p 14–20CrossRef
3.
Zurück zum Zitat I.D.S. Bott, L.F.G.D. Souza, J.C.G. Teixeira et al., High-Strength Steel Development for Pipelines: A Brazilian Perspective, Metall. Mater. Trans. A, 2005, 36, p 443–454CrossRef I.D.S. Bott, L.F.G.D. Souza, J.C.G. Teixeira et al., High-Strength Steel Development for Pipelines: A Brazilian Perspective, Metall. Mater. Trans. A, 2005, 36, p 443–454CrossRef
4.
Zurück zum Zitat C.W. Li, Y. Wang, T. Han et al., Microstructure and Toughness of Coarse Grain Heat-Affected Zone of Domestic X70 Pipeline Steel During In-Service Welding, J. Mater. Sci., 2011, 46, p 727–733CrossRef C.W. Li, Y. Wang, T. Han et al., Microstructure and Toughness of Coarse Grain Heat-Affected Zone of Domestic X70 Pipeline Steel During In-Service Welding, J. Mater. Sci., 2011, 46, p 727–733CrossRef
5.
Zurück zum Zitat X.D. Li, Y.R. Fan, X.P. Ma et al., Influence of Martensite-Austenite Constituents Formed at Different Intercritical Temperatures on Toughness, Mater. Des., 2015, 67, p 457–463CrossRef X.D. Li, Y.R. Fan, X.P. Ma et al., Influence of Martensite-Austenite Constituents Formed at Different Intercritical Temperatures on Toughness, Mater. Des., 2015, 67, p 457–463CrossRef
6.
Zurück zum Zitat J. Nowacki and P. Rybicki, The Influence of Welding Heat Input on Submerged Arc Welded Duplex Steel Joints Imperfections, J. Mater. Process. Technol., 2005, 164–165, p 1082–1088CrossRef J. Nowacki and P. Rybicki, The Influence of Welding Heat Input on Submerged Arc Welded Duplex Steel Joints Imperfections, J. Mater. Process. Technol., 2005, 164–165, p 1082–1088CrossRef
7.
Zurück zum Zitat S. Shen, I.N.A. Oguocha, and S. Yannacopoulos, Effect of Heat Input on Weld Bead Geometry of Submerged Arc Welded ASTM A709 Grade 50 Steel Joints, J. Mater. Process. Technol., 2012, 212, p 286–294CrossRef S. Shen, I.N.A. Oguocha, and S. Yannacopoulos, Effect of Heat Input on Weld Bead Geometry of Submerged Arc Welded ASTM A709 Grade 50 Steel Joints, J. Mater. Process. Technol., 2012, 212, p 286–294CrossRef
8.
Zurück zum Zitat L.Y. Lan, C.L. Qiu, D.W. Zhao et al., Microstructural Characteristics and Toughness of the Simulated Coarse Grained Heat Affected Zone of High Strength Low Carbon Bainitic Steel, Mater. Sci. Eng. A, 2011, 529, p 192–200CrossRef L.Y. Lan, C.L. Qiu, D.W. Zhao et al., Microstructural Characteristics and Toughness of the Simulated Coarse Grained Heat Affected Zone of High Strength Low Carbon Bainitic Steel, Mater. Sci. Eng. A, 2011, 529, p 192–200CrossRef
9.
Zurück zum Zitat P.S. Zhou, B. Wang, L. Wang et al., Effect of Welding Heat Input on Grain Boundary Evolution and Toughness Properties in CGHAZ of X90 Pipeline Steel, Mater. Sci. Eng. A, 2018, 722, p 112–121CrossRef P.S. Zhou, B. Wang, L. Wang et al., Effect of Welding Heat Input on Grain Boundary Evolution and Toughness Properties in CGHAZ of X90 Pipeline Steel, Mater. Sci. Eng. A, 2018, 722, p 112–121CrossRef
10.
Zurück zum Zitat C.L. Davis and J.E. King, Cleavage Initiation in the Intercritically Reheated Coarse-Grained Heat-Affected Zone: Part I. Fractographic Evidence, Metall. Mater. Trans. A, 1994, 25, p 563–573CrossRef C.L. Davis and J.E. King, Cleavage Initiation in the Intercritically Reheated Coarse-Grained Heat-Affected Zone: Part I. Fractographic Evidence, Metall. Mater. Trans. A, 1994, 25, p 563–573CrossRef
11.
Zurück zum Zitat P. Mohseni, J.K. Solberg, M. Karlsen et al., Cleavage Fracture Initiation at M–A Constituents in Intercritically Coarse-Grained Heat-Affected Zone of a HSLA Steel, Metall. Mater. Trans. A, 2014, 45, p 384–394CrossRef P. Mohseni, J.K. Solberg, M. Karlsen et al., Cleavage Fracture Initiation at M–A Constituents in Intercritically Coarse-Grained Heat-Affected Zone of a HSLA Steel, Metall. Mater. Trans. A, 2014, 45, p 384–394CrossRef
12.
Zurück zum Zitat X.D. Li, X.P. Ma, S.V. Subramanian et al., EBSD Characterization of Secondary Microcracks in the Heat Affected Zone of a X100 Pipeline Steel Weld Joint, Int. J. Fract., 2015, 193, p 131–139CrossRef X.D. Li, X.P. Ma, S.V. Subramanian et al., EBSD Characterization of Secondary Microcracks in the Heat Affected Zone of a X100 Pipeline Steel Weld Joint, Int. J. Fract., 2015, 193, p 131–139CrossRef
13.
Zurück zum Zitat H. Xie, L.X. Du, J. Hu et al., Effect of Thermo-Mechanical Cycling on the Microstructure and Toughness in the Weld CGHAZ of a Novel High Strength Low Carbon Steel, Mater. Sci. Eng. A, 2015, 639, p 482–488CrossRef H. Xie, L.X. Du, J. Hu et al., Effect of Thermo-Mechanical Cycling on the Microstructure and Toughness in the Weld CGHAZ of a Novel High Strength Low Carbon Steel, Mater. Sci. Eng. A, 2015, 639, p 482–488CrossRef
14.
Zurück zum Zitat Y.L. Zhou, T. Jia, X.J. Zhang et al., Microstructure and Toughness of the CGHAZ of an Offshore Platform Steel, J. Mater. Process. Technol., 2015, 219, p 314–320CrossRef Y.L. Zhou, T. Jia, X.J. Zhang et al., Microstructure and Toughness of the CGHAZ of an Offshore Platform Steel, J. Mater. Process. Technol., 2015, 219, p 314–320CrossRef
15.
Zurück zum Zitat F. Vollertsen, S. Grünenwald, M. Rethmeier et al., Welding Thick Steel Plates with Fiber Lasers and GMAW, Weld. World, 2010, 54, p R62–R70CrossRef F. Vollertsen, S. Grünenwald, M. Rethmeier et al., Welding Thick Steel Plates with Fiber Lasers and GMAW, Weld. World, 2010, 54, p R62–R70CrossRef
16.
Zurück zum Zitat A. Unt and A. Salminen, Effect of Welding Parameters and the Heat Input on Weld Bead Profile of Laser Welded T-Joint in Structural Steel, J. Laser Appl., 2015, 27, p S29002-1–S29002-8CrossRef A. Unt and A. Salminen, Effect of Welding Parameters and the Heat Input on Weld Bead Profile of Laser Welded T-Joint in Structural Steel, J. Laser Appl., 2015, 27, p S29002-1–S29002-8CrossRef
17.
Zurück zum Zitat P.F. Guo, X.N. Wang, G.H. Zhu et al., Microstructures and Properties of X100 Pipeline Steel Joints by Fiber Laser Welding, Chin. J. Lasers, 2017, 44, p 1202003-1–1202003-8 P.F. Guo, X.N. Wang, G.H. Zhu et al., Microstructures and Properties of X100 Pipeline Steel Joints by Fiber Laser Welding, Chin. J. Lasers, 2017, 44, p 1202003-1–1202003-8
18.
Zurück zum Zitat G. Spanos, R.W. Fonda, R.A. Vandermeer et al., Microstructural Changes in HSLA-100 Steel Thermally Cycled to Simulate the Heat-Affected Zone During Welding, Metall. Mater. Trans. A, 1995, 26, p 3277–3293CrossRef G. Spanos, R.W. Fonda, R.A. Vandermeer et al., Microstructural Changes in HSLA-100 Steel Thermally Cycled to Simulate the Heat-Affected Zone During Welding, Metall. Mater. Trans. A, 1995, 26, p 3277–3293CrossRef
19.
Zurück zum Zitat L.Y. Lan, X.W. Kong, C.L. Qiu et al., Characterization of Coarse Bainite Transformation in Low Carbon Steel During Simulated Welding Thermal Cycles, Mater. Chart., 2015, 105, p 95–103CrossRef L.Y. Lan, X.W. Kong, C.L. Qiu et al., Characterization of Coarse Bainite Transformation in Low Carbon Steel During Simulated Welding Thermal Cycles, Mater. Chart., 2015, 105, p 95–103CrossRef
20.
Zurück zum Zitat X.D. Li, X.P. Ma, S.V. Subramanian et al., Structure–Property–Fracture Mechanism Correlation in Heat-Affected Zone of X100 Ferrite-Bainite Pipeline Steel, Metall. Mater. Trans. E, 2015, 2, p 1–11 X.D. Li, X.P. Ma, S.V. Subramanian et al., Structure–Property–Fracture Mechanism Correlation in Heat-Affected Zone of X100 Ferrite-Bainite Pipeline Steel, Metall. Mater. Trans. E, 2015, 2, p 1–11
21.
Zurück zum Zitat P. Haušild, I. Nedbal, C. Berdin et al., The Influence of Ductile Tearing on Fracture Energy in the Ductile-to-Brittle Transition Temperature Range, Mater. Sci. Eng. A, 2002, 335, p 164–174CrossRef P. Haušild, I. Nedbal, C. Berdin et al., The Influence of Ductile Tearing on Fracture Energy in the Ductile-to-Brittle Transition Temperature Range, Mater. Sci. Eng. A, 2002, 335, p 164–174CrossRef
22.
Zurück zum Zitat M. Shome, Effect of Heat-Input on Austenite Grain Size in the Heat-Affected Zone of HSLA-100 Steel, Mater. Sci. Eng. A, 2007, 445–446, p 454–460CrossRef M. Shome, Effect of Heat-Input on Austenite Grain Size in the Heat-Affected Zone of HSLA-100 Steel, Mater. Sci. Eng. A, 2007, 445–446, p 454–460CrossRef
23.
Zurück zum Zitat D.A. Curry, Cleavage Micromechanisms of Crack Extension in Steels, J. Mater. Sci., 1980, 14, p 319–326 D.A. Curry, Cleavage Micromechanisms of Crack Extension in Steels, J. Mater. Sci., 1980, 14, p 319–326
24.
Zurück zum Zitat F. Cleri, S. Yip, D. Wolf et al., Atomic-Scale Mechanism of Crack-Tip Plasticity: Dislocation Nucleation and Crack-Tip Shielding, Phys. Rev. Lett., 1997, 79, p 1309–1312CrossRef F. Cleri, S. Yip, D. Wolf et al., Atomic-Scale Mechanism of Crack-Tip Plasticity: Dislocation Nucleation and Crack-Tip Shielding, Phys. Rev. Lett., 1997, 79, p 1309–1312CrossRef
25.
Zurück zum Zitat A.W. Thompson and J.F. Knott, Micromechanisms of Brittle Fracture, Metall. Mater. Trans. A, 1993, 24, p 523–534CrossRef A.W. Thompson and J.F. Knott, Micromechanisms of Brittle Fracture, Metall. Mater. Trans. A, 1993, 24, p 523–534CrossRef
26.
Zurück zum Zitat A. Pineau, Development of the Local Approach to Fracture over the Past 25, Int. J. Fracture, 2006, 138, p 139–166CrossRef A. Pineau, Development of the Local Approach to Fracture over the Past 25, Int. J. Fracture, 2006, 138, p 139–166CrossRef
27.
Zurück zum Zitat X.G. Zhang, G. Miyamoto, Y. Tojib et al., Orientation of austenite reverted from martensite in Fe-2Mn-1.5Si-0.3C alloy, Acta Mater., 2018, 144, p 601–612CrossRef X.G. Zhang, G. Miyamoto, Y. Tojib et al., Orientation of austenite reverted from martensite in Fe-2Mn-1.5Si-0.3C alloy, Acta Mater., 2018, 144, p 601–612CrossRef
28.
Zurück zum Zitat Y.B. Xu, Z.P. Hu, Y. Zou et al., Effect of Two-Step Intercritical Annealing on Microstructure and Mechanical Properties of Hot-Rolled Medium Manganese TRIP Steel Containing δ-Ferrite, Mater. Sci. Eng. A, 2017, 688, p 40–55CrossRef Y.B. Xu, Z.P. Hu, Y. Zou et al., Effect of Two-Step Intercritical Annealing on Microstructure and Mechanical Properties of Hot-Rolled Medium Manganese TRIP Steel Containing δ-Ferrite, Mater. Sci. Eng. A, 2017, 688, p 40–55CrossRef
29.
Zurück zum Zitat J. Hu, L.X. Du, G.S. Sun et al., The Determining Role of Reversed Austenite in Enhancing Toughness of a Novel Ultra-Low Carbon Medium Manganese High Strength Steel, Scr. Mater., 2015, 104, p 87–90CrossRef J. Hu, L.X. Du, G.S. Sun et al., The Determining Role of Reversed Austenite in Enhancing Toughness of a Novel Ultra-Low Carbon Medium Manganese High Strength Steel, Scr. Mater., 2015, 104, p 87–90CrossRef
30.
Zurück zum Zitat J. Hu, L.X. Du, W. Xu et al., Ensuring Combination of Strength, Ductility and Toughness in Medium-Manganese Steel Through Optimization of Nano-Scale Metastable Austenite, Mater. Chart., 2018, 136, p 20–28CrossRef J. Hu, L.X. Du, W. Xu et al., Ensuring Combination of Strength, Ductility and Toughness in Medium-Manganese Steel Through Optimization of Nano-Scale Metastable Austenite, Mater. Chart., 2018, 136, p 20–28CrossRef
31.
Zurück zum Zitat G. Lacroix, T. Pardoen, and P. Jacques, The Fracture Toughness of TRIP-Assisted Multiphase Steels, Acta Mater., 2008, 56, p 3900–3913CrossRef G. Lacroix, T. Pardoen, and P. Jacques, The Fracture Toughness of TRIP-Assisted Multiphase Steels, Acta Mater., 2008, 56, p 3900–3913CrossRef
32.
Zurück zum Zitat P.J. Gibbs, B.C.D. Cooman, D.W. Brown et al., Strain Partitioning in Ultra-Fine Grained Medium-Manganese Transformation Induced Plasticity Steel, Mater. Sci. Eng. A, 2014, 609, p 323–333CrossRef P.J. Gibbs, B.C.D. Cooman, D.W. Brown et al., Strain Partitioning in Ultra-Fine Grained Medium-Manganese Transformation Induced Plasticity Steel, Mater. Sci. Eng. A, 2014, 609, p 323–333CrossRef
33.
Zurück zum Zitat B.C.D. Cooman, P. Gibbs, S. Lee et al., Transmission Electron Microscopy Analysis of Yielding in Ultrafine-Grained Medium Mn Transformation-Induced Plasticity Steel, Metall. Mater. Trans. A, 2013, 44, p 2563–2572CrossRef B.C.D. Cooman, P. Gibbs, S. Lee et al., Transmission Electron Microscopy Analysis of Yielding in Ultrafine-Grained Medium Mn Transformation-Induced Plasticity Steel, Metall. Mater. Trans. A, 2013, 44, p 2563–2572CrossRef
34.
Zurück zum Zitat J. Chen, M.Y. Lv, S. Tang et al., Correlation Between Mechanical Properties and Retained Austenite Characteristics in A Low-Carbon Medium Manganese Alloyed Steel Plate, Mater. Chart., 2015, 106, p 108–111CrossRef J. Chen, M.Y. Lv, S. Tang et al., Correlation Between Mechanical Properties and Retained Austenite Characteristics in A Low-Carbon Medium Manganese Alloyed Steel Plate, Mater. Chart., 2015, 106, p 108–111CrossRef
35.
Zurück zum Zitat Y. Zou, Y.B. Xu, Z.P. Hu et al., Austenite Stability and Its Effect on the Toughness of a High Strength Ultra-Low Carbon Medium Manganese Steel Plate, Mater. Sci. Eng. A, 2016, 675, p 153–163CrossRef Y. Zou, Y.B. Xu, Z.P. Hu et al., Austenite Stability and Its Effect on the Toughness of a High Strength Ultra-Low Carbon Medium Manganese Steel Plate, Mater. Sci. Eng. A, 2016, 675, p 153–163CrossRef
36.
Zurück zum Zitat Z.J. Xie, S.F. Yuan, W.H. Zhou et al., Stabilization of Retained Austenite by the Two-Step Intercritical Heat Treatment and Its Effect on the Toughness of a Low Alloyed Steel, Mater. Des., 2014, 59, p 193–198CrossRef Z.J. Xie, S.F. Yuan, W.H. Zhou et al., Stabilization of Retained Austenite by the Two-Step Intercritical Heat Treatment and Its Effect on the Toughness of a Low Alloyed Steel, Mater. Des., 2014, 59, p 193–198CrossRef
37.
Zurück zum Zitat E. Bouyne, H.M. Flower, T.C. Lindley et al., Use of EBSD Technique to Examine Microstructure and Cracking in a Bainitic Steel, Scr. Mater., 1998, 39, p 295–300CrossRef E. Bouyne, H.M. Flower, T.C. Lindley et al., Use of EBSD Technique to Examine Microstructure and Cracking in a Bainitic Steel, Scr. Mater., 1998, 39, p 295–300CrossRef
38.
Zurück zum Zitat Z. Guo, C.S. Lee, and J.W. Morris, On Coherent Transformations in Steel, Acta Mater., 2004, 52, p 5511–5518CrossRef Z. Guo, C.S. Lee, and J.W. Morris, On Coherent Transformations in Steel, Acta Mater., 2004, 52, p 5511–5518CrossRef
39.
Zurück zum Zitat X.L. Wang and Z.Q. Wang, New Insights Into the Mechanism of Cooling Rate on the Impact Toughness of Coarse Grained Heat Affected Zone from the Aspect of Variant Selection, Mater. Sci. Eng. A, 2017, 704, p 448–458CrossRef X.L. Wang and Z.Q. Wang, New Insights Into the Mechanism of Cooling Rate on the Impact Toughness of Coarse Grained Heat Affected Zone from the Aspect of Variant Selection, Mater. Sci. Eng. A, 2017, 704, p 448–458CrossRef
40.
Zurück zum Zitat D.A. Curry and J.F. Knott, Effect of Microstructure on Cleavage Fracture Toughness of Quenched and Tempered Steels, J. Mater. Sci., 1979, 13, p 341–345 D.A. Curry and J.F. Knott, Effect of Microstructure on Cleavage Fracture Toughness of Quenched and Tempered Steels, J. Mater. Sci., 1979, 13, p 341–345
Metadaten
Titel
A Comparative Analysis on Microstructure and Fracture Mechanism of X100 Pipeline Steel CGHAZ Between Laser Welding and Arc Welding
verfasst von
Xiaonan Qi
Hongshuang Di
Qian Sun
Xiaonan Wang
Xiaming Chen
Yuan Gao
Zhenguang Liu
Publikationsdatum
04.11.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 11/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04412-5

Weitere Artikel der Ausgabe 11/2019

Journal of Materials Engineering and Performance 11/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.