Skip to main content
Erschienen in: Thermal Engineering 9/2023

01.09.2023 | HEAT AND MASS TRANSFER, PROPERTIES OF WORKING BODIES AND MATERIALS

A Complex Study of Superheated Water Atomization

verfasst von: Yu. A. Zeigarnik, V. I. Zalkind, V. L. Nizovskii, L. V. Nizovskii, S. S. Shchigel’, I. V. Maslakova

Erschienen in: Thermal Engineering | Ausgabe 9/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The article presents the results obtained from a complex study of heavily superheated water atomization during its discharging through various types of atomizers. A system for optic measurements of the spray cone dispersion structure has been developed and adjusted. The developed measurement system is based on measuring the scattering indicatrix of a probing laser emission in a wide range of angles (±45°) and solving the inverse scattering problem using the Mie theory. The results from a wide-scale experimental study of the spray cone dispersion structures produced by various types of nozzles with a sprayed water temperature of 140‒260°С and pressure at the nozzle exit equal to 0.1 MPa are presented, and the possibility of liquid atomization (to water droplets with a diameter of 5 µm or smaller down to submicrometer size) at high temperatures is shown. It has been found that the spray cone structure has a pronounced bimodal pattern: droplets 5‒8 µm in diameter combine with a submicrometer mode. With a growth of atomized water temperature, the fraction of submicrometer mode increases, reaching 60‒65 wt % at a temperature of 240‒260°С for cylindrical nozzles and 80‒90 wt % for convergent-divergent nozzles. For the case of water injection into the compressor of a gas turbine unit equipped with the TV-117 industrial grade turbine, the possibility of additionally controlling the peak power output has been demonstrated. It makes 4–8% per water flowrate percent (with respect to the air flowrate). The power output control quality is in compliance with the requirements of the UES of Russia network standards. Superheated water is finding an increasingly growing use for firefighting at power industry facilities, in closed premises, in spills of petroleum products, in performing operations with liquefied gas, and in other situations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M. Jonsson and J. Yan, “Humidified gas turbines — A review of proposed and implemented cycles,” Energy 30, 1013−1078 (2005).CrossRef M. Jonsson and J. Yan, “Humidified gas turbines — A review of proposed and implemented cycles,” Energy 30, 1013−1078 (2005).CrossRef
2.
Zurück zum Zitat L. V. Arsen’ev and A. L. Berkovich, “The parameters of gas-turbine units with water injected into the compressor,” Therm. Eng. 43, 461–465 (1996). L. V. Arsen’ev and A. L. Berkovich, “The parameters of gas-turbine units with water injected into the compressor,” Therm. Eng. 43, 461–465 (1996).
3.
Zurück zum Zitat B. V. Raushenbakh, Physical Principles of the Working Process in Combustion Chambers of Jet Engines (Mashinostroenie, Moscow, 1964; Defense Technical Information Center, Ft. Belvoir, 1967). B. V. Raushenbakh, Physical Principles of the Working Process in Combustion Chambers of Jet Engines (Mashinostroenie, Moscow, 1964; Defense Technical Information Center, Ft. Belvoir, 1967).
4.
Zurück zum Zitat M. Chacker, C. B. Meher, and T. Mee, “Inlet fogging of gas turbine engines. Part 2. Fog droplet sizing analysis, nozzle types, measurment and testing,” ASME J. Eng. Gas Turbines Power 126, 550−570 (2004). M. Chacker, C. B. Meher, and T. Mee, “Inlet fogging of gas turbine engines. Part 2. Fog droplet sizing analysis, nozzle types, measurment and testing,” ASME J. Eng. Gas Turbines Power 126, 550−570 (2004).
5.
Zurück zum Zitat “The TopHat turbine cycle,” Mod. Power Syst., Apr., 35−37 (2001). https://www.modernpowersystems.com/ features/featurethe-tophat-turbine-cycle/ “The TopHat turbine cycle,” Mod. Power Syst., Apr., 35−37 (2001). https://​www.​modernpowersyste​ms.​com/​ features/featurethe-tophat-turbine-cycle/
6.
Zurück zum Zitat L. A. Dombrovskii, V. I. Zalkind, Yu. A. Zeigarnik, D. V. Marinichev, V. L. Nizovskii, A. A. Oksman, and K. A. Khodakov, “Atomization of superheated water: Results from experimental studies,” Therm. Eng. 56, 191–200 (2009).CrossRef L. A. Dombrovskii, V. I. Zalkind, Yu. A. Zeigarnik, D. V. Marinichev, V. L. Nizovskii, A. A. Oksman, and K. A. Khodakov, “Atomization of superheated water: Results from experimental studies,” Therm. Eng. 56, 191–200 (2009).CrossRef
7.
Zurück zum Zitat L. A. Dombrovsky, Radiation Heat Transfer in Disperse Systems (Begell House, New York, 1996). L. A. Dombrovsky, Radiation Heat Transfer in Disperse Systems (Begell House, New York, 1996).
8.
Zurück zum Zitat H. C. Van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981). H. C. Van de Hulst, Light Scattering by Small Particles (Dover, New York, 1981).
9.
Zurück zum Zitat C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, Chichester, 1998).CrossRef C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, Chichester, 1998).CrossRef
10.
Zurück zum Zitat K. S. Shifrin, “Significant range of scattering angles when measuring the size distribution of particles by the small angle method,” Izv. Akad. Nauk SSSR, Ser.: Fiz. Atmos. Okeana 11, 928−932 (1966). K. S. Shifrin, “Significant range of scattering angles when measuring the size distribution of particles by the small angle method,” Izv. Akad. Nauk SSSR, Ser.: Fiz. Atmos. Okeana 11, 928−932 (1966).
11.
Zurück zum Zitat D. M. Marinichev, Experimental Study of the Finely Dispersed Spray of Superheated Water, Candidate’s Dissertation in Engineering (Joint Inst. for High Temperatures, Russian Academy of Sciences, Moscow, 2013). D. M. Marinichev, Experimental Study of the Finely Dispersed Spray of Superheated Water, Candidate’s Dissertation in Engineering (Joint Inst. for High Temperatures, Russian Academy of Sciences, Moscow, 2013).
12.
Zurück zum Zitat C. Dumouchell, P. Yangyingsakthavorn, and J. Cousin, “Light multiple scattering correction of laser-diffraction spray drop-size distribution measurements,” Int. J. Multiphase Flow. 35, 277–287 (2009).CrossRef C. Dumouchell, P. Yangyingsakthavorn, and J. Cousin, “Light multiple scattering correction of laser-diffraction spray drop-size distribution measurements,” Int. J. Multiphase Flow. 35, 277–287 (2009).CrossRef
13.
Zurück zum Zitat V. B. Alekseev, V. I. Zalkind, Yu. A. Zeigarnik, D. V. Marinichev, V. L. Nizovskii, and L. V. Nizovskii, “On the nature of bimodal drop distribution over sizes under superheated water atomization,” High Temp. 53, 214–216 (2015).CrossRef V. B. Alekseev, V. I. Zalkind, Yu. A. Zeigarnik, D. V. Marinichev, V. L. Nizovskii, and L. V. Nizovskii, “On the nature of bimodal drop distribution over sizes under superheated water atomization,” High Temp. 53, 214–216 (2015).CrossRef
14.
Zurück zum Zitat E. Yu. Kumzerova, Numerical Study of the Formation and Growth of Vapor Bubbles under Conditions of a Drop in Liquid Pressure, Candidate’s Dissertation in Mathematics and Physics (Ioffe Inst., St. Petersburg, 2012). E. Yu. Kumzerova, Numerical Study of the Formation and Growth of Vapor Bubbles under Conditions of a Drop in Liquid Pressure, Candidate’s Dissertation in Mathematics and Physics (Ioffe Inst., St. Petersburg, 2012).
15.
18.
Zurück zum Zitat V. I. Zalkind, Yu. A. Zeigarnik, V. L. Nizovskii, L. V. Nizovskii, and S. S. Shchigel’, “Study of superheated water spray through an expanding nozzle: Report theses,” in Thermophysics and Physical Hydrodynamics: Proc. 7th All-Russian Sci. Conf., Sochi, Russia, Sept. 5−14, 2022 (ITTF, Novosibirsk, 2022). V. I. Zalkind, Yu. A. Zeigarnik, V. L. Nizovskii, L. V. Nizovskii, and S. S. Shchigel’, “Study of superheated water spray through an expanding nozzle: Report theses,” in Thermophysics and Physical Hydrodynamics: Proc. 7th All-Russian Sci. Conf., Sochi, Russia, Sept. 5−14, 2022 (ITTF, Novosibirsk, 2022).
20.
Zurück zum Zitat V. I. Zalkind, Yu. A. Zeigarnik, V. L. Nizovskii, L. V. Nizovskii, and S. S. Shchigel’, “Study of superheated water spray in a confuser–diffuser nozzle; Specific features of heterogeneous nucleation,” in Proc. 8th Russian Nats. Conf. on Heat Transfer (RNKT-8), Moscow, Russia, Oct. 17−22, 2022 (Mosk. Energ. Inst., Moscow, 2022), Vol. 1, pp. 413−414. V. I. Zalkind, Yu. A. Zeigarnik, V. L. Nizovskii, L. V. Nizovskii, and S. S. Shchigel’, “Study of superheated water spray in a confuser–diffuser nozzle; Specific features of heterogeneous nucleation,” in Proc. 8th Russian Nats. Conf. on Heat Transfer (RNKT-8), Moscow, Russia, Oct. 17−22, 2022 (Mosk. Energ. Inst., Moscow, 2022), Vol. 1, pp. 413−414.
21.
Zurück zum Zitat V. I. Zalkind, Yu. A. Zeigarnik, V. L. Nizovskii, L. V. Nizovskii, and S. S. Shchigel’, “A comparison of models of heterogeneous nucleation in superheated water boiling in a confuser–diffuser nozzle: Report theses,” in Thermophysics and Physical Hydrodynamics: Proc. 7th All-Russian Sci. Conf., Sochi, Russia, Sept. 5−14, 2022 (ITTF, Novosibirsk, 2022). V. I. Zalkind, Yu. A. Zeigarnik, V. L. Nizovskii, L. V. Nizovskii, and S. S. Shchigel’, “A comparison of models of heterogeneous nucleation in superheated water boiling in a confuser–diffuser nozzle: Report theses,” in Thermophysics and Physical Hydrodynamics: Proc. 7th All-Russian Sci. Conf., Sochi, Russia, Sept. 5−14, 2022 (ITTF, Novosibirsk, 2022).
22.
Zurück zum Zitat S. Crampsie, “Wet compression boost for power output and efficiency,” Gas Turbine World 2 (2012). S. Crampsie, “Wet compression boost for power output and efficiency,” Gas Turbine World 2 (2012).
23.
Zurück zum Zitat S. Higuchi, S. Hatamiya, N. Seiki, and S. Marushima, “A study of performance on advanced humid air turbine systems,” in Proc. Int. Gas Turbine Congr. (IGTC'03), Tokyo, Japan, Nov. 2−7, 2003 (Gas Turbine Society of Japan, Tokyo, 2003). S. Higuchi, S. Hatamiya, N. Seiki, and S. Marushima, “A study of performance on advanced humid air turbine systems,” in Proc. Int. Gas Turbine Congr. (IGTC'03), Tokyo, Japan, Nov. 2−7, 2003 (Gas Turbine Society of Japan, Tokyo, 2003).
24.
Zurück zum Zitat K. Brun, R. Kurtz, M. Nored, and J. Thorp, “Inlet fogging and overspray impact on industrial gas turbine life and performance,” in Proc. 2nd Middle East Turbomachinery Symp., Doha, Quatar, Mar. 17–20, 2013 (Turbomachinery Laboratory, College Station, Tex, 2013). K. Brun, R. Kurtz, M. Nored, and J. Thorp, “Inlet fogging and overspray impact on industrial gas turbine life and performance,” in Proc. 2nd Middle East Turbomachinery Symp., Doha, Quatar, Mar. 17–20, 2013 (Turbomachinery Laboratory, College Station, Tex, 2013).
25.
Zurück zum Zitat O. N. Favorskii, V. M. Batenin, V. E. Belyaev, V. Yu. Vasyutinskii, I. T. Goryunov, Yu. S. Eliseev, Yu. A. Zeigarnik, A. S. Kosoi, V. M. Maslennikov, A. K. Makhan’kov, S. I. Pishchikov, A. N. Remezov, M. V. Sinkevich, and Yu. N. Sokolov, “The PGU MES-60 combined-cycle (steam–gas) installation with steam injection and a heat pump for the Mosenergo power system,” Thern. Eng. 48, 751–560 (2001). O. N. Favorskii, V. M. Batenin, V. E. Belyaev, V. Yu. Vasyutinskii, I. T. Goryunov, Yu. S. Eliseev, Yu. A. Zeigarnik, A. S. Kosoi, V. M. Maslennikov, A. K. Makhan’kov, S. I. Pishchikov, A. N. Remezov, M. V. Sinkevich, and Yu. N. Sokolov, “The PGU MES-60 combined-cycle (steam–gas) installation with steam injection and a heat pump for the Mosenergo power system,” Thern. Eng. 48, 751–560 (2001).
26.
Zurück zum Zitat O. N. Favorskii, V. B. Alekseev, V. I. Zalkind, Yu. A. Zeigarnik, P. P. Ivanov, D. V. Marinichev, V. L. Nizovskii, and L. V. Nizovskii, “Experimentally studying TV3-117 gas-turbine unit characteristics at superheated water injection into a compressor,” Therm. Eng. 61, 376–384 (2014). https://doi.org/10.1134/S0040601514050024CrossRef O. N. Favorskii, V. B. Alekseev, V. I. Zalkind, Yu. A. Zeigarnik, P. P. Ivanov, D. V. Marinichev, V. L. Nizovskii, and L. V. Nizovskii, “Experimentally studying TV3-117 gas-turbine unit characteristics at superheated water injection into a compressor,” Therm. Eng. 61, 376–384 (2014). https://​doi.​org/​10.​1134/​S004060151405002​4CrossRef
27.
Zurück zum Zitat STO (Standard) SO-TsDU EES 001-2005. Norms for the Participation of TPP Power Units in the Normalized Primary and Automatic Secondary Frequency Control (Sist. Oper. Tsentr. Dispetcher. Upr. Edin. Energ. Syst., Moscow, 2005). STO (Standard) SO-TsDU EES 001-2005. Norms for the Participation of TPP Power Units in the Normalized Primary and Automatic Secondary Frequency Control (Sist. Oper. Tsentr. Dispetcher. Upr. Edin. Energ. Syst., Moscow, 2005).
28.
Zurück zum Zitat A. V. Pryanichnikov, V. V. Roenko, and E. B. Bondarev, “Extinguishing spills of petroleum and its products with metastable vapor-droplet jets,” Pozhary Chrezvychainye Situatsii: Predotvrashchenie Likvidatsiya, No. 4, 7−12 (2015). A. V. Pryanichnikov, V. V. Roenko, and E. B. Bondarev, “Extinguishing spills of petroleum and its products with metastable vapor-droplet jets,” Pozhary Chrezvychainye Situatsii: Predotvrashchenie Likvidatsiya, No. 4, 7−12 (2015).
29.
Zurück zum Zitat V. V. Roenko, A. V. Pryanichnikov, and E. B. Bondarev, “Application of temperature-activated water for extinguishing turbine oils at power facilities,” Tekhnol. Tekhnosfernoi Bezop., No. 4(62), 84−93 (2015). V. V. Roenko, A. V. Pryanichnikov, and E. B. Bondarev, “Application of temperature-activated water for extinguishing turbine oils at power facilities,” Tekhnol. Tekhnosfernoi Bezop., No. 4(62), 84−93 (2015).
30.
Zurück zum Zitat A. D. Ishchenko, V. V. Roenko, and I. G. Malygin, “Experiments of extinguishing fires of power facilities and premises of ships with an aqueous medium by volumetric way,” Morsk. Intell. Tekhnol. 1 (3), 128−133 (2018). A. D. Ishchenko, V. V. Roenko, and I. G. Malygin, “Experiments of extinguishing fires of power facilities and premises of ships with an aqueous medium by volumetric way,” Morsk. Intell. Tekhnol. 1 (3), 128−133 (2018).
Metadaten
Titel
A Complex Study of Superheated Water Atomization
verfasst von
Yu. A. Zeigarnik
V. I. Zalkind
V. L. Nizovskii
L. V. Nizovskii
S. S. Shchigel’
I. V. Maslakova
Publikationsdatum
01.09.2023
Verlag
Pleiades Publishing
Erschienen in
Thermal Engineering / Ausgabe 9/2023
Print ISSN: 0040-6015
Elektronische ISSN: 1555-6301
DOI
https://doi.org/10.1134/S0040601523090082

Weitere Artikel der Ausgabe 9/2023

Thermal Engineering 9/2023 Zur Ausgabe

STEAM-TURBINE, GAS-TURBINE, COMBINED-CYCLE POWER PLANTS AND THEIR AUXILIARY EQUIPMENT

A New Method for Determining the Aerodynamic Forces Arising in Turbine Seals

HEAT AND MASS TRANSFER, PROPERTIES OF WORKING BODIES AND MATERIALS

Simulation of Mixing of Single-Phase Fluids in T-Junctions

    Premium Partner