Skip to main content
Erschienen in: Computational Mechanics 4/2015

01.04.2015 | Original Paper

A computational investigation of a model of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing

verfasst von: A. McBride, S. Bargmann, B. D. Reddy

Erschienen in: Computational Mechanics | Ausgabe 4/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A theory of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing has recently been proposed by Anand et al. (Int J Plasticity 64:1–25, 2015). Aspects of the numerical implementation of the aforementioned theory using the finite element method are detailed in this presentation. To facilitate the implementation, a viscoplastic regularization of the plastic evolution equations is performed. The weak form of the governing equations and their time-discrete counterparts are derived. The theory is then elucidated via a series of three-dimensional numerical examples where particular emphasis is placed on the role of the defect-flow relations. These relations govern the evolution of a measure of the glide and geometrically necessary dislocation densities which is associated with the stored energy of cold work.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Anand L, Gurtin ME, Reddy BD (2015) The stored energy of cold work, thermal annealing, and other thermodynamic issues in single crystal plasticity at small length scales. Int J Plasticity 64:1–25CrossRef Anand L, Gurtin ME, Reddy BD (2015) The stored energy of cold work, thermal annealing, and other thermodynamic issues in single crystal plasticity at small length scales. Int J Plasticity 64:1–25CrossRef
2.
Zurück zum Zitat Armero F, Simo JC (1992) A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems. Int J Numer Methods Eng 35(4):737–766. ISSN 0029-5981 Armero F, Simo JC (1992) A new unconditionally stable fractional step method for non-linear coupled thermomechanical problems. Int J Numer Methods Eng 35(4):737–766. ISSN 0029-5981
3.
Zurück zum Zitat Arsenlis AP, Parks DM (1999) Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater 47:1597–1611CrossRef Arsenlis AP, Parks DM (1999) Crystallographic aspects of geometrically-necessary and statistically-stored dislocation density. Acta Mater 47:1597–1611CrossRef
4.
Zurück zum Zitat Bargmann S, Ekh M (2013) Microscopic temperature field prediction during adiabatic loading using gradient extended crystal plasticity. Int J Solids Struct 50(6):899–906CrossRef Bargmann S, Ekh M (2013) Microscopic temperature field prediction during adiabatic loading using gradient extended crystal plasticity. Int J Solids Struct 50(6):899–906CrossRef
5.
Zurück zum Zitat Bargmann S, Reddy BD (2011) Modeling of polycrystals using a gradient crystal plasticity theory that includes dissipative micro-stresses. Eur J Mech A 30(5):719–730CrossRefMATHMathSciNet Bargmann S, Reddy BD (2011) Modeling of polycrystals using a gradient crystal plasticity theory that includes dissipative micro-stresses. Eur J Mech A 30(5):719–730CrossRefMATHMathSciNet
6.
Zurück zum Zitat Bargmann S, Reddy BD, Klusemann B (2014) A computational study of a model of single-crystal strain-gradient viscoplasticity with an interactive hardening relation. Int J Solids Struct 51(15–16):2754–2764CrossRef Bargmann S, Reddy BD, Klusemann B (2014) A computational study of a model of single-crystal strain-gradient viscoplasticity with an interactive hardening relation. Int J Solids Struct 51(15–16):2754–2764CrossRef
7.
Zurück zum Zitat Bayley CJ, Brekelmans WAM, Geers MGD (2006) A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. Int J Solids Struct 43(24):7268–7286CrossRefMATH Bayley CJ, Brekelmans WAM, Geers MGD (2006) A comparison of dislocation induced back stress formulations in strain gradient crystal plasticity. Int J Solids Struct 43(24):7268–7286CrossRefMATH
8.
Zurück zum Zitat Benzerga AA, Bréchet Y, Needleman A, van der Giessen E (2005) The stored energy of cold work: predictions from discrete dislocation plasticity. Acta Mater 53(18):4765–4779CrossRef Benzerga AA, Bréchet Y, Needleman A, van der Giessen E (2005) The stored energy of cold work: predictions from discrete dislocation plasticity. Acta Mater 53(18):4765–4779CrossRef
9.
Zurück zum Zitat Bever MB, Holt DL, Titchener AL (1973) The stored energy of cold work. Prog Mater Sci 17:833–849CrossRef Bever MB, Holt DL, Titchener AL (1973) The stored energy of cold work. Prog Mater Sci 17:833–849CrossRef
10.
Zurück zum Zitat Bittencourt E, Needleman A, Gurtin ME, van der Giessen E (2003) A comparison of nonlocal continuum and discrete dislocation plasticity predictions. J Mech Phys Solids 51:281–310CrossRefMATHMathSciNet Bittencourt E, Needleman A, Gurtin ME, van der Giessen E (2003) A comparison of nonlocal continuum and discrete dislocation plasticity predictions. J Mech Phys Solids 51:281–310CrossRefMATHMathSciNet
11.
Zurück zum Zitat Cleveringa HHM, van Der Giessen E, Needleman A (1997) Comparison of discrete dislocation and continuum plasticity predictions for a composite material. Acta Mater 45(8):3163–3179CrossRef Cleveringa HHM, van Der Giessen E, Needleman A (1997) Comparison of discrete dislocation and continuum plasticity predictions for a composite material. Acta Mater 45(8):3163–3179CrossRef
12.
Zurück zum Zitat Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Ration Mech Anal 13(1):167–178CrossRefMATHMathSciNet Coleman BD, Noll W (1963) The thermodynamics of elastic materials with heat conduction and viscosity. Arch Ration Mech Anal 13(1):167–178CrossRefMATHMathSciNet
13.
Zurück zum Zitat Dederichs PH, Leibfri G (1969) Elastic Green’s function for anisotropic cubic crystals. Phys Rev 188(3):1175–1183CrossRefMathSciNet Dederichs PH, Leibfri G (1969) Elastic Green’s function for anisotropic cubic crystals. Phys Rev 188(3):1175–1183CrossRefMathSciNet
14.
Zurück zum Zitat Ebobisse F, Reddy BD (2004) Some mathematical problems in perfect plasticity. Comput Methods Appl Mech Eng 193(48–51):5071–5094CrossRefMATHMathSciNet Ebobisse F, Reddy BD (2004) Some mathematical problems in perfect plasticity. Comput Methods Appl Mech Eng 193(48–51):5071–5094CrossRefMATHMathSciNet
15.
Zurück zum Zitat Ekh M, Grymer M, Runesson K, Svedberg T (2007) Gradient crystal plasticity as part of the computational modelling of polycrystals. Int J Numer Methods Eng 72(2):197–220CrossRefMATHMathSciNet Ekh M, Grymer M, Runesson K, Svedberg T (2007) Gradient crystal plasticity as part of the computational modelling of polycrystals. Int J Numer Methods Eng 72(2):197–220CrossRefMATHMathSciNet
16.
Zurück zum Zitat Ekh M, Bargmann S, Grymer M (2011) Influence of grain boundary conditions on modeling of size-dependence in polycrystals. Acta Mech 218(1–2):103–113 ISSN 0001–5970CrossRefMATH Ekh M, Bargmann S, Grymer M (2011) Influence of grain boundary conditions on modeling of size-dependence in polycrystals. Acta Mech 218(1–2):103–113 ISSN 0001–5970CrossRefMATH
17.
Zurück zum Zitat Ertürk İ, van Dommelen JAW, Geers MGD (2009) Energetic dislocation interactions and thermodynamical aspects of strain gradient crystal plasticity theories. J Mech Phys Solids 57(11):1801–1814CrossRefMATHMathSciNet Ertürk İ, van Dommelen JAW, Geers MGD (2009) Energetic dislocation interactions and thermodynamical aspects of strain gradient crystal plasticity theories. J Mech Phys Solids 57(11):1801–1814CrossRefMATHMathSciNet
18.
Zurück zum Zitat Evers LP, Parks DM, Brekelmans WAM, Geers MGD (2002) Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation. J Mech Phys Solids 50(11):2403–2424CrossRefMATH Evers LP, Parks DM, Brekelmans WAM, Geers MGD (2002) Crystal plasticity model with enhanced hardening by geometrically necessary dislocation accumulation. J Mech Phys Solids 50(11):2403–2424CrossRefMATH
19.
Zurück zum Zitat Evers LP, Brekelmans WAM, Geers MGD (2004a) Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. Int J Solids Struct 41:5209–5230CrossRefMATH Evers LP, Brekelmans WAM, Geers MGD (2004a) Scale dependent crystal plasticity framework with dislocation density and grain boundary effects. Int J Solids Struct 41:5209–5230CrossRefMATH
20.
Zurück zum Zitat Evers LP, Brekelmans WAM, Geers MGD (2004b) Non-local crystal plasticity model with intrinsic SSD and GND effects. J Mech Phys Solids 52(10):2379–2401CrossRefMATH Evers LP, Brekelmans WAM, Geers MGD (2004b) Non-local crystal plasticity model with intrinsic SSD and GND effects. J Mech Phys Solids 52(10):2379–2401CrossRefMATH
21.
Zurück zum Zitat Gurtin ME (2000) On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J Mech Phys Solids 48(5):989–1036CrossRefMATHMathSciNet Gurtin ME (2000) On the plasticity of single crystals: free energy, microforces, plastic-strain gradients. J Mech Phys Solids 48(5):989–1036CrossRefMATHMathSciNet
22.
Zurück zum Zitat Gurtin ME (2002) A gradient theory of single-crystal plasticity that accounts for geometrically necessary dislocations. J Mech Phys Solids 50(1):5–32CrossRefMATHMathSciNet Gurtin ME (2002) A gradient theory of single-crystal plasticity that accounts for geometrically necessary dislocations. J Mech Phys Solids 50(1):5–32CrossRefMATHMathSciNet
23.
Zurück zum Zitat Gurtin ME (2006) The Burgers vector and the flow of screw and edge dislocations in finite-deformation single-crystal plasticity. J Mech Phys Solids 54(9):1882–1898CrossRefMATHMathSciNet Gurtin ME (2006) The Burgers vector and the flow of screw and edge dislocations in finite-deformation single-crystal plasticity. J Mech Phys Solids 54(9):1882–1898CrossRefMATHMathSciNet
24.
Zurück zum Zitat Gurtin ME (2008) A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on densities of geometrically necessary dislocations. Int J Plasticity 24(4):702–725CrossRefMATH Gurtin ME (2008) A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on densities of geometrically necessary dislocations. Int J Plasticity 24(4):702–725CrossRefMATH
25.
Zurück zum Zitat Gurtin ME (2010) A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on the accumulation of geometrically necessary dislocations. Int J Plasticity 26(8):1073–1096CrossRefMATH Gurtin ME (2010) A finite-deformation, gradient theory of single-crystal plasticity with free energy dependent on the accumulation of geometrically necessary dislocations. Int J Plasticity 26(8):1073–1096CrossRefMATH
26.
Zurück zum Zitat Gurtin ME, Anand L (2005) A theory of strain-gradient plasticity for isotropic, plastically irrotational materials, Part I: small deformations. J Mech Phys Solids 53(7):1624–1649 Gurtin ME, Anand L (2005) A theory of strain-gradient plasticity for isotropic, plastically irrotational materials, Part I: small deformations. J Mech Phys Solids 53(7):1624–1649
27.
Zurück zum Zitat Gurtin ME, Needleman A (2005) Boundary conditions in small-deformation, single-crystal plasticity that account for the burgers vector. J Mech Phys Solids 53(1):1–31CrossRefMATHMathSciNet Gurtin ME, Needleman A (2005) Boundary conditions in small-deformation, single-crystal plasticity that account for the burgers vector. J Mech Phys Solids 53(1):1–31CrossRefMATHMathSciNet
30.
Zurück zum Zitat Korelc J (2002) Multi-language and multi-environment generation of nonlinear finite element codes. Eng Comput 18(4):312–327CrossRef Korelc J (2002) Multi-language and multi-environment generation of nonlinear finite element codes. Eng Comput 18(4):312–327CrossRef
31.
Zurück zum Zitat Lele SP, Anand L (2008) A small-deformation strain-gradient theory for isotropic viscoplastic materials. Philos Mag 88(30–32):3655–3689CrossRef Lele SP, Anand L (2008) A small-deformation strain-gradient theory for isotropic viscoplastic materials. Philos Mag 88(30–32):3655–3689CrossRef
32.
Zurück zum Zitat Miehe C, Mauthe S, Hildebrand FE (2014) Variational gradient plasticity at finite strains, Part III: local-global updates and regularization techniques in multiplicative plasticity for single crystals. Comput Methods Appl Mech Eng 268:735–762CrossRefMATHMathSciNet Miehe C, Mauthe S, Hildebrand FE (2014) Variational gradient plasticity at finite strains, Part III: local-global updates and regularization techniques in multiplicative plasticity for single crystals. Comput Methods Appl Mech Eng 268:735–762CrossRefMATHMathSciNet
33.
34.
Zurück zum Zitat Reddy BD (2011a) The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity, Part 2: single-crystal plasticity. Contin Mech Thermodyn 23(6):551–572CrossRefMATHMathSciNet Reddy BD (2011a) The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity, Part 2: single-crystal plasticity. Contin Mech Thermodyn 23(6):551–572CrossRefMATHMathSciNet
35.
Zurück zum Zitat Reddy BD (2011b) The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity, Part 1: polycrystalline plasticity. Contin Mech Thermodyn 23(6):527–549CrossRefMATHMathSciNet Reddy BD (2011b) The role of dissipation and defect energy in variational formulations of problems in strain-gradient plasticity, Part 1: polycrystalline plasticity. Contin Mech Thermodyn 23(6):527–549CrossRefMATHMathSciNet
36.
Zurück zum Zitat Reddy BD, Wieners C, Wohlmuth B (2012) Finite element analysis and algorithms for single-crystal strain-gradient plasticity. Int J Numer Methods Eng 90(6):784–804CrossRefMATHMathSciNet Reddy BD, Wieners C, Wohlmuth B (2012) Finite element analysis and algorithms for single-crystal strain-gradient plasticity. Int J Numer Methods Eng 90(6):784–804CrossRefMATHMathSciNet
37.
Zurück zum Zitat Rosakis P, Rosakis AJ, Ravichandran G, Hodowany J (2000) A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals. J Mech Phys Solids 48(3):581–607CrossRefMATHMathSciNet Rosakis P, Rosakis AJ, Ravichandran G, Hodowany J (2000) A thermodynamic internal variable model for the partition of plastic work into heat and stored energy in metals. J Mech Phys Solids 48(3):581–607CrossRefMATHMathSciNet
38.
Zurück zum Zitat Rudraraju S, van der Ven A, Garikipati K (2014) Three-dimensional isogeometric solutions to general boundary value problems of Toupin’s gradient elasticity theory at finite strains. Comput Methods Appl Mech Eng 278:705–728 ISSN 0045–7825CrossRef Rudraraju S, van der Ven A, Garikipati K (2014) Three-dimensional isogeometric solutions to general boundary value problems of Toupin’s gradient elasticity theory at finite strains. Comput Methods Appl Mech Eng 278:705–728 ISSN 0045–7825CrossRef
39.
Zurück zum Zitat Schmidt-Baldassari M (2003) Numerical concepts for rate-independent single crystal plasticity. Comput Methods Appl Mech Eng 192:1261–1280CrossRefMATH Schmidt-Baldassari M (2003) Numerical concepts for rate-independent single crystal plasticity. Comput Methods Appl Mech Eng 192:1261–1280CrossRefMATH
40.
Zurück zum Zitat Schröder J, Miehe C (1997) Aspects of computational rate-independent crystal plasticity. Comput Mater Sci 9:168–176CrossRef Schröder J, Miehe C (1997) Aspects of computational rate-independent crystal plasticity. Comput Mater Sci 9:168–176CrossRef
41.
Zurück zum Zitat Taylor GI, Quinney H (1934) The latent energy remaining in a metal after cold working. Proc R Soc Lond A 143:307–326CrossRef Taylor GI, Quinney H (1934) The latent energy remaining in a metal after cold working. Proc R Soc Lond A 143:307–326CrossRef
42.
Zurück zum Zitat Taylor GI, Quinney H (1937) The latent energy remaining in a metal after cold working. Proc R Soc Lond A 163:157–181CrossRef Taylor GI, Quinney H (1937) The latent energy remaining in a metal after cold working. Proc R Soc Lond A 163:157–181CrossRef
43.
Zurück zum Zitat Wriggers P (2008) Nonlinear finite element methods. Springer, BerlinMATH Wriggers P (2008) Nonlinear finite element methods. Springer, BerlinMATH
44.
Zurück zum Zitat Wulfinghoff S, Böhlke T (2012) Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics. Proc R Soc Lond A 468(2145):2682–2703CrossRef Wulfinghoff S, Böhlke T (2012) Equivalent plastic strain gradient enhancement of single crystal plasticity: theory and numerics. Proc R Soc Lond A 468(2145):2682–2703CrossRef
Metadaten
Titel
A computational investigation of a model of single-crystal gradient thermoplasticity that accounts for the stored energy of cold work and thermal annealing
verfasst von
A. McBride
S. Bargmann
B. D. Reddy
Publikationsdatum
01.04.2015
Verlag
Springer Berlin Heidelberg
Erschienen in
Computational Mechanics / Ausgabe 4/2015
Print ISSN: 0178-7675
Elektronische ISSN: 1432-0924
DOI
https://doi.org/10.1007/s00466-015-1134-5

Weitere Artikel der Ausgabe 4/2015

Computational Mechanics 4/2015 Zur Ausgabe

Neuer Inhalt