Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2015

01.02.2015

A computational model of urinary bladder smooth muscle syncytium

Validation and investigation of electrical properties

verfasst von: Shailesh Appukuttan, Keith L. Brain, Rohit Manchanda

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Certain smooth muscles, such as the detrusor of the urinary bladder, exhibit a variety of spikes that differ markedly in their amplitudes and time courses. The origin of this diversity is poorly understood but is often attributed to the syncytial nature of smooth muscle and its distributed innervation. In order to help clarify such issues, we present here a three-dimensional electrical model of syncytial smooth muscle developed using the compartmental modeling technique, with special reference to the bladder detrusor. Values of model parameters were sourced or derived from experimental data. The model was validated against various modes of stimulation employed experimentally and the results were found to accord with both theoretical predictions and experimental observations. Model outputs also satisfied criteria characteristic of electrical syncytia such as correlation between the spatial spread and temporal decay of electrotonic potentials as well as positively skewed amplitude frequency histogram for sub-threshold potentials, and lead to interesting conclusions. Based on analysis of syncytia of different sizes, it was found that a size of 21-cube may be considered the critical minimum size for an electrically infinite syncytium. Set against experimental results, we conjecture the existence of electrically sub-infinite bundles in the detrusor. Moreover, the absence of coincident activity between closely spaced cells potentially implies, counterintuitively, highly efficient electrical coupling between such cells. The model thus provides a heuristic platform for the interpretation of electrical activity in syncytial tissues.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Beach, J.M., McGahren, E.D., Duling, B.R (1998). Capillaries and arterioles are electrically coupled in hamster cheek pouch. American Journal of Physiology-Heart and Circulatory Physiology, 275 (4), H1489—H1496. Beach, J.M., McGahren, E.D., Duling, B.R (1998). Capillaries and arterioles are electrically coupled in hamster cheek pouch. American Journal of Physiology-Heart and Circulatory Physiology, 275 (4), H1489—H1496.
Zurück zum Zitat Bennett, M. (1972). Autonomic neuromuscular transmission. CUP Archive. Bennett, M. (1972). Autonomic neuromuscular transmission. CUP Archive.
Zurück zum Zitat Bennett, M. (1973). Structure and electrical properties of the autonomic neuromuscular junction. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 265 (867), 25–34.CrossRef Bennett, M. (1973). Structure and electrical properties of the autonomic neuromuscular junction. Philosophical Transactions of the Royal Society of London B, Biological Sciences, 265 (867), 25–34.CrossRef
Zurück zum Zitat Bennett, M., & Gibson, W (1995). On the contribution of quantal secretion from close-contact and loose-contact varicosities to the synaptic potentials in the vas deferens. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 347 (1320), 187–204.PubMedCrossRef Bennett, M., & Gibson, W (1995). On the contribution of quantal secretion from close-contact and loose-contact varicosities to the synaptic potentials in the vas deferens. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 347 (1320), 187–204.PubMedCrossRef
Zurück zum Zitat Bennett, M., Gibson, W., Poznanski, R. (1993). Extracellular current flow and potential during quantal transmission from varicosities in a smooth muscle syncytium. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 342 (1300), 89–99.PubMedCrossRef Bennett, M., Gibson, W., Poznanski, R. (1993). Extracellular current flow and potential during quantal transmission from varicosities in a smooth muscle syncytium. Philosophical Transactions of the Royal Society of London Series B: Biological Sciences, 342 (1300), 89–99.PubMedCrossRef
Zurück zum Zitat Blakeley, A., & Cunnane, T (1979). The packeted release of transmitter from the sympathetic nerves of the guinea-pig vas deferens: an electrophysiological study. The Journal of Physiology, 296 (1), 85–96.PubMedCentralPubMedCrossRef Blakeley, A., & Cunnane, T (1979). The packeted release of transmitter from the sympathetic nerves of the guinea-pig vas deferens: an electrophysiological study. The Journal of Physiology, 296 (1), 85–96.PubMedCentralPubMedCrossRef
Zurück zum Zitat Brading, A. (1987). Physiology of bladder smooth muscle. In The Physiology of the Lower Urinary Tract (pp. 161–191). Springer, . Brading, A. (1987). Physiology of bladder smooth muscle. In The Physiology of the Lower Urinary Tract (pp. 161–191). Springer, .
Zurück zum Zitat Brading, A. (2006). Spontaneous activity of lower urinary tract smooth muscles: correlation between ion channels and tissue function. The Journal of physiology, 570 (1), 13–22.PubMedCentralPubMedCrossRef Brading, A. (2006). Spontaneous activity of lower urinary tract smooth muscles: correlation between ion channels and tissue function. The Journal of physiology, 570 (1), 13–22.PubMedCentralPubMedCrossRef
Zurück zum Zitat Brading, A., & Brain, K. (2011). Ion channel modulators and urinary tract function. In Urinary Tract (pp. 375–393). Springer. Brading, A., & Brain, K. (2011). Ion channel modulators and urinary tract function. In Urinary Tract (pp. 375–393). Springer.
Zurück zum Zitat Bramich, N.J., & Brading, A.F (1996). Electrical properties of smooth muscle in the guinea-pig urinary bladder. The Journal of Physiology, 492 (Pt 1), 185–198.PubMedCentralPubMedCrossRef Bramich, N.J., & Brading, A.F (1996). Electrical properties of smooth muscle in the guinea-pig urinary bladder. The Journal of Physiology, 492 (Pt 1), 185–198.PubMedCentralPubMedCrossRef
Zurück zum Zitat Bywater, R., & Taylor, G. (1980). The passive membrane properties and excitatory junction potentials of the guinea pig deferens. The Journal of Physiology, 300 (1), 303–316.PubMedCentralPubMedCrossRef Bywater, R., & Taylor, G. (1980). The passive membrane properties and excitatory junction potentials of the guinea pig deferens. The Journal of Physiology, 300 (1), 303–316.PubMedCentralPubMedCrossRef
Zurück zum Zitat Carnevale, N.T., & Hines, M.L. (2006). The NEURON book. Cambridge University Press. Carnevale, N.T., & Hines, M.L. (2006). The NEURON book. Cambridge University Press.
Zurück zum Zitat Carr, J.J. (1991). Designer’s Handbook Instrmtn/Contr Circuits. Academic Press. Carr, J.J. (1991). Designer’s Handbook Instrmtn/Contr Circuits. Academic Press.
Zurück zum Zitat Chapman, R., & Fry, C. (1978). An analysis of the cable properties of frog ventricular myocardium. The Journal of Physiology, 283 (1), 263–282.PubMedCentralPubMedCrossRef Chapman, R., & Fry, C. (1978). An analysis of the cable properties of frog ventricular myocardium. The Journal of Physiology, 283 (1), 263–282.PubMedCentralPubMedCrossRef
Zurück zum Zitat Christ, G.J., Day, N.S., Day, M., Zhao, W., Persson, K., Pandita, R.K., Andersson, K.E. (2003). Increased connexin43-mediated intercellular communication in a rat model of bladder overactivity in vivo. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 284 (5), R1241—R1248.PubMed Christ, G.J., Day, N.S., Day, M., Zhao, W., Persson, K., Pandita, R.K., Andersson, K.E. (2003). Increased connexin43-mediated intercellular communication in a rat model of bladder overactivity in vivo. American Journal of Physiology - Regulatory, Integrative and Comparative Physiology, 284 (5), R1241—R1248.PubMed
Zurück zum Zitat Crane, G.J., Hines, M.L., Neild, T.O. (2001). Simulating the spread of membrane potential changes in arteriolar networks. Microcirculation, 8(1), 33–43.PubMedCrossRef Crane, G.J., Hines, M.L., Neild, T.O. (2001). Simulating the spread of membrane potential changes in arteriolar networks. Microcirculation, 8(1), 33–43.PubMedCrossRef
Zurück zum Zitat Cunnane, T., & Manchanda, R (1989). Simultaneous intracellular and focal extracellular recording of junction potentials and currents, and the time course of quantal transmitter action in rodent vas deferens. Neuroscience, 30 (3), 563–575.PubMedCrossRef Cunnane, T., & Manchanda, R (1989). Simultaneous intracellular and focal extracellular recording of junction potentials and currents, and the time course of quantal transmitter action in rodent vas deferens. Neuroscience, 30 (3), 563–575.PubMedCrossRef
Zurück zum Zitat Cunnane, T., & Manchanda, R. (1990). On the factors which determine the time-courses of junction potentials in the guinea-pig vas deferens. Neuroscience, 37 (2), 507–516.PubMedCrossRef Cunnane, T., & Manchanda, R. (1990). On the factors which determine the time-courses of junction potentials in the guinea-pig vas deferens. Neuroscience, 37 (2), 507–516.PubMedCrossRef
Zurück zum Zitat Dayan, P., & Abbott, L.F. (2001). Theoretical neuroscience: computational and mathematical modeling of neural systems. MA: MIT press Cambridge. Dayan, P., & Abbott, L.F. (2001). Theoretical neuroscience: computational and mathematical modeling of neural systems. MA: MIT press Cambridge.
Zurück zum Zitat Del Castillo, J., & Katz, B. (1956). Localization of active spots within the neuromuscular junction of the frog. The Journal of Physiology, 132 (3), 630.PubMedCentralPubMedCrossRef Del Castillo, J., & Katz, B. (1956). Localization of active spots within the neuromuscular junction of the frog. The Journal of Physiology, 132 (3), 630.PubMedCentralPubMedCrossRef
Zurück zum Zitat Elbadawi, A., Yalla, S., Resnick, N (1993). Structural basis of geriatric voiding dysfunction. iv. bladder outlet obstruction. The Journal of Urology, 150 (5 Pt 2), 1681–1695.PubMed Elbadawi, A., Yalla, S., Resnick, N (1993). Structural basis of geriatric voiding dysfunction. iv. bladder outlet obstruction. The Journal of Urology, 150 (5 Pt 2), 1681–1695.PubMed
Zurück zum Zitat Fry, C., & Wu, C. (1998). The cellular basis of bladder instability. British Journal of Urology, 81, 1–8.PubMedCrossRef Fry, C., & Wu, C. (1998). The cellular basis of bladder instability. British Journal of Urology, 81, 1–8.PubMedCrossRef
Zurück zum Zitat Fry, C., Cooklin, M., Birns, J., Mundy, A. (1999). Measurement of intercellular electrical coupling in guinea-pig detrusor smooth muscle. The Journal of Urology, 161 (2), 660–664.PubMedCrossRef Fry, C., Cooklin, M., Birns, J., Mundy, A. (1999). Measurement of intercellular electrical coupling in guinea-pig detrusor smooth muscle. The Journal of Urology, 161 (2), 660–664.PubMedCrossRef
Zurück zum Zitat Fry, C.H., Sui, G.P., Severs, N.J., Wu, C. (2004). Spontaneous activity and electrical coupling in human detrusor smooth muscle: implications for detrusor overactivity?. Urology, 63 (3), 3–10.PubMedCrossRef Fry, C.H., Sui, G.P., Severs, N.J., Wu, C. (2004). Spontaneous activity and electrical coupling in human detrusor smooth muscle: implications for detrusor overactivity?. Urology, 63 (3), 3–10.PubMedCrossRef
Zurück zum Zitat Goodenough, D.A. (1975). The structure and permeability of isolated hepatocyte gap junctions. In Cold Spring Harbor Symposia on Quantitative Biology (vol. 40, pp. 37–43). Goodenough, D.A. (1975). The structure and permeability of isolated hepatocyte gap junctions. In Cold Spring Harbor Symposia on Quantitative Biology (vol. 40, pp. 37–43).
Zurück zum Zitat De Groot, J.R., Veenstra, T., Verkerk, A.O., Wilders, R., Smits, J.P., Wilms-Schopman, F.J., Wiegerinck, R.F., Bourier, J., Belterman, C.N., Coronel, R., et al (2003). Conduction slowing by the gap junctional uncoupler carbenoxolone. Cardiovascular Research, 60 (2), 288–297.PubMedCrossRef De Groot, J.R., Veenstra, T., Verkerk, A.O., Wilders, R., Smits, J.P., Wilms-Schopman, F.J., Wiegerinck, R.F., Bourier, J., Belterman, C.N., Coronel, R., et al (2003). Conduction slowing by the gap junctional uncoupler carbenoxolone. Cardiovascular Research, 60 (2), 288–297.PubMedCrossRef
Zurück zum Zitat Haefliger, J.A., Tissières, P., Tawadros, T., Formenton, A., Bény, J.L., Nicod, P., Frey, P., Meda, P. (2002). Connexins 43 and 26 are differentially increased after rat bladder outlet obstruction. Experimental Cell Research, 274 (2), 216–225.PubMedCrossRef Haefliger, J.A., Tissières, P., Tawadros, T., Formenton, A., Bény, J.L., Nicod, P., Frey, P., Meda, P. (2002). Connexins 43 and 26 are differentially increased after rat bladder outlet obstruction. Experimental Cell Research, 274 (2), 216–225.PubMedCrossRef
Zurück zum Zitat Hashitani, H., Fukuta, H., Takano, H., Klemm, M.F., Suzuki, H. (2001). Origin and propagation of spontaneous excitation in smooth muscle of the guinea-pig urinary bladder. The Journal of Physiology, 530 (2), 273–286.PubMedCentralPubMedCrossRef Hashitani, H., Fukuta, H., Takano, H., Klemm, M.F., Suzuki, H. (2001). Origin and propagation of spontaneous excitation in smooth muscle of the guinea-pig urinary bladder. The Journal of Physiology, 530 (2), 273–286.PubMedCentralPubMedCrossRef
Zurück zum Zitat Hashitani, H., Yanai, Y., Suzuki, H. (2004). Role of interstitial cells and gap junctions in the transmission of spontaneous Ca 2+ signals in detrusor smooth muscles of the guinea-pig urinary bladder. The Journal of Physiology, 559 (2), 567– 581.PubMedCentralPubMedCrossRef Hashitani, H., Yanai, Y., Suzuki, H. (2004). Role of interstitial cells and gap junctions in the transmission of spontaneous Ca 2+ signals in detrusor smooth muscles of the guinea-pig urinary bladder. The Journal of Physiology, 559 (2), 567– 581.PubMedCentralPubMedCrossRef
Zurück zum Zitat Hayase, M., Hashitani, H., Kohri, K., Suzuki, H. (2009). Role of K + channels in regulating spontaneous activity in detrusor smooth muscle in situ in the mouse bladder. The Journal of Urology, 181 (5), 2355–2365.PubMedCrossRef Hayase, M., Hashitani, H., Kohri, K., Suzuki, H. (2009). Role of K + channels in regulating spontaneous activity in detrusor smooth muscle in situ in the mouse bladder. The Journal of Urology, 181 (5), 2355–2365.PubMedCrossRef
Zurück zum Zitat Hines, M.L., & Carnevale, N.T. (1997). The NEURON simulation environment. Neural Computation, 9 (6), 1179–1209.PubMedCrossRef Hines, M.L., & Carnevale, N.T. (1997). The NEURON simulation environment. Neural Computation, 9 (6), 1179–1209.PubMedCrossRef
Zurück zum Zitat Hines, M.L., & Carnevale, N.T. (2000). Expanding NEURON’s repertoire of mechanisms with nmodl. Neural Computation, 12 (5), 995–1007.PubMedCrossRef Hines, M.L., & Carnevale, N.T. (2000). Expanding NEURON’s repertoire of mechanisms with nmodl. Neural Computation, 12 (5), 995–1007.PubMedCrossRef
Zurück zum Zitat Hodgkin, A., & Rushton, W. (1946). The electrical constants of a crustacean nerve fibre. Proceedings of the Royal Society of London Series B-Biological Sciences, 133 (873), 444–479.CrossRef Hodgkin, A., & Rushton, W. (1946). The electrical constants of a crustacean nerve fibre. Proceedings of the Royal Society of London Series B-Biological Sciences, 133 (873), 444–479.CrossRef
Zurück zum Zitat Holman, M.E., Taylor, G., Tomita, T. (1977). Some properties of the smooth muscle of mouse vas deferens. The Journal of Physiology, 266 (3), 751–764.PubMedCentralPubMedCrossRef Holman, M.E., Taylor, G., Tomita, T. (1977). Some properties of the smooth muscle of mouse vas deferens. The Journal of Physiology, 266 (3), 751–764.PubMedCentralPubMedCrossRef
Zurück zum Zitat Jack, J., & Redman, S. (1971). The propagation of transient potentials in some linear cable structures. The Journal of Physiology, 215 (2), 283–320.PubMedCentralPubMedCrossRef Jack, J., & Redman, S. (1971). The propagation of transient potentials in some linear cable structures. The Journal of Physiology, 215 (2), 283–320.PubMedCentralPubMedCrossRef
Zurück zum Zitat Jack, J.J., Noble, D., Tsien, R.W. (1975). Electric current flow in excitable cells. Jack, J.J., Noble, D., Tsien, R.W. (1975). Electric current flow in excitable cells.
Zurück zum Zitat Johnston, D., & Wu, S. M.-S. (1995). Foundations of cellular neurophysiology. Johnston, D., & Wu, S. M.-S. (1995). Foundations of cellular neurophysiology.
Zurück zum Zitat Katz, B. (1948). The electrical properties of the muscle fibre membrane. Proceedings of the Royal Society of London Series B-Biological Sciences, 135 (881), 506–534.CrossRef Katz, B. (1948). The electrical properties of the muscle fibre membrane. Proceedings of the Royal Society of London Series B-Biological Sciences, 135 (881), 506–534.CrossRef
Zurück zum Zitat Keener, J.P. (1991). The effects of discrete gap junction coupling on propagation in myocardium. Journal of theoretical biology, 148 (1), 49–82.PubMedCrossRef Keener, J.P. (1991). The effects of discrete gap junction coupling on propagation in myocardium. Journal of theoretical biology, 148 (1), 49–82.PubMedCrossRef
Zurück zum Zitat Manchanda, R. (1995). Membrane current and potential change during neurotransmission in smooth muscle. Current Science, 69 (2), 140–150. Manchanda, R. (1995). Membrane current and potential change during neurotransmission in smooth muscle. Current Science, 69 (2), 140–150.
Zurück zum Zitat Meng, E., Young, J.S., Brading, A.F (2008). Spontaneous activity of mouse detrusor smooth muscle and the effects of the urothelium. Neurourology and Urodynamics, 27 (1), 79–87.PubMedCrossRef Meng, E., Young, J.S., Brading, A.F (2008). Spontaneous activity of mouse detrusor smooth muscle and the effects of the urothelium. Neurourology and Urodynamics, 27 (1), 79–87.PubMedCrossRef
Zurück zum Zitat Moreno, A., Saez, J., Fishman, G., Spray, D (1994). Human connexin43 gap junction channels. Regulation of unitary conductances by phosphorylation. Circulation Research, 74(6), 1050–1057.PubMedCrossRef Moreno, A., Saez, J., Fishman, G., Spray, D (1994). Human connexin43 gap junction channels. Regulation of unitary conductances by phosphorylation. Circulation Research, 74(6), 1050–1057.PubMedCrossRef
Zurück zum Zitat Neuhaus, J., Wolburg, H., Hermsdorf, T., Stolzenburg, J.U., Dorschner, W. (2002). Detrusor smooth muscle cells of the guinea-pig are functionally coupled via gap junctions in situ and in cell culture. Cell and Tissue Research, 309(2), 301–311.PubMedCrossRef Neuhaus, J., Wolburg, H., Hermsdorf, T., Stolzenburg, J.U., Dorschner, W. (2002). Detrusor smooth muscle cells of the guinea-pig are functionally coupled via gap junctions in situ and in cell culture. Cell and Tissue Research, 309(2), 301–311.PubMedCrossRef
Zurück zum Zitat Padmakumar, M., Bhuvaneshwari, K., Manchanda, R. (2012). Classification and analysis of electrical signals in urinary bladder smooth muscle using a modified vector quantization technique. In IEEE International Conference on Signal Processing and Communications (SPCOM) (pp. 1–5). Padmakumar, M., Bhuvaneshwari, K., Manchanda, R. (2012). Classification and analysis of electrical signals in urinary bladder smooth muscle using a modified vector quantization technique. In IEEE International Conference on Signal Processing and Communications (SPCOM) (pp. 1–5).
Zurück zum Zitat Palani, D., Ghildyal, P., Manchanda, R. (2006). Effects of carbenoxolone on syncytial electrical properties and junction potentials of guinea-pig vas deferens. Naunyn-Schmiedeberg’s Archives of Pharmacology, 374(3), 207–214.PubMedCrossRef Palani, D., Ghildyal, P., Manchanda, R. (2006). Effects of carbenoxolone on syncytial electrical properties and junction potentials of guinea-pig vas deferens. Naunyn-Schmiedeberg’s Archives of Pharmacology, 374(3), 207–214.PubMedCrossRef
Zurück zum Zitat Purves, R. (1976). Current flow and potential in a three-dimensional syncytium. Journal of Theoretical Biology, 60(1), 147–162.PubMedCrossRef Purves, R. (1976). Current flow and potential in a three-dimensional syncytium. Journal of Theoretical Biology, 60(1), 147–162.PubMedCrossRef
Zurück zum Zitat Rall, W. (1964). Theoretical significance of dendritic trees for neuronal input-output relations. Neural Theory and Modeling, 73–97. Rall, W. (1964). Theoretical significance of dendritic trees for neuronal input-output relations. Neural Theory and Modeling, 73–97.
Zurück zum Zitat Sourav, S., & Manchanda, R. (2000). Influence of the size of syncytial units on synaptic potentials in smooth muscle. Medical and Biological Engineering and Computing, 38(3), 356–359.PubMedCrossRef Sourav, S., & Manchanda, R. (2000). Influence of the size of syncytial units on synaptic potentials in smooth muscle. Medical and Biological Engineering and Computing, 38(3), 356–359.PubMedCrossRef
Zurück zum Zitat Steers, W.D., & Tuttle, J.B. (2009). Role of ion channels in bladder function and voiding disorders. Current Bladder Dysfunction Reports, 4(3), 125–131.CrossRef Steers, W.D., & Tuttle, J.B. (2009). Role of ion channels in bladder function and voiding disorders. Current Bladder Dysfunction Reports, 4(3), 125–131.CrossRef
Zurück zum Zitat Stjärne, L., & Stjärne, E. (1995). Geometry, kinetics and plasticity of release and clearance of atp and noradrenaline as sympathetic cotransmitters: roles for the neurogenic contraction. Progress in Neurobiology, 47(1), 45–94.PubMedCrossRef Stjärne, L., & Stjärne, E. (1995). Geometry, kinetics and plasticity of release and clearance of atp and noradrenaline as sympathetic cotransmitters: roles for the neurogenic contraction. Progress in Neurobiology, 47(1), 45–94.PubMedCrossRef
Zurück zum Zitat Sui, G., Coppen, S., Dupont, E., Rothery, S., Gillespie, J., Newgreen, D., Severs, N., Fry, C. (2003). Impedance measurements and connexin expression in human detrusor muscle from stable and unstable bladders. BJU International, 92(3), 297–305.PubMedCrossRef Sui, G., Coppen, S., Dupont, E., Rothery, S., Gillespie, J., Newgreen, D., Severs, N., Fry, C. (2003). Impedance measurements and connexin expression in human detrusor muscle from stable and unstable bladders. BJU International, 92(3), 297–305.PubMedCrossRef
Zurück zum Zitat Sui, G.P., Wu, C., Fry, C. (2001). The electrophysiological properties of cultured and freshly isolated detrusor smooth muscle cells. The Journal of Urology, 165(2), 627–632.PubMedCrossRef Sui, G.P., Wu, C., Fry, C. (2001). The electrophysiological properties of cultured and freshly isolated detrusor smooth muscle cells. The Journal of Urology, 165(2), 627–632.PubMedCrossRef
Zurück zum Zitat Tanaka, I., & Sasaki, Y. (1966). On the electrotonic spread in cardiac muscle of the mouse. The Journal of General Physiology, 49(6), 1089–1110.PubMedCentralPubMedCrossRef Tanaka, I., & Sasaki, Y. (1966). On the electrotonic spread in cardiac muscle of the mouse. The Journal of General Physiology, 49(6), 1089–1110.PubMedCentralPubMedCrossRef
Zurück zum Zitat Tasaki, I., & Hagiwara, S. (1957). Capacity of muscle fiber membrane. The American Journal of Physiology, 188(3), 423–429.PubMed Tasaki, I., & Hagiwara, S. (1957). Capacity of muscle fiber membrane. The American Journal of Physiology, 188(3), 423–429.PubMed
Zurück zum Zitat Tomita, T. (1966). Membrane capacity and resistance of mammalian smooth muscle. Journal of Theoretical Biology, 12(2), 216– 227.PubMedCrossRef Tomita, T. (1966). Membrane capacity and resistance of mammalian smooth muscle. Journal of Theoretical Biology, 12(2), 216– 227.PubMedCrossRef
Zurück zum Zitat Turale, N., Devulapalli, A., Manchanda, R., Moudgalya, K., Sivakumar, G (2003). Simulation framework for electrophysiological networks: effect of syncytial properties on smooth-muscle synaptic potentials. Medical and Biological Engineering and Computing, 41(5), 589–594.PubMedCrossRef Turale, N., Devulapalli, A., Manchanda, R., Moudgalya, K., Sivakumar, G (2003). Simulation framework for electrophysiological networks: effect of syncytial properties on smooth-muscle synaptic potentials. Medical and Biological Engineering and Computing, 41(5), 589–594.PubMedCrossRef
Zurück zum Zitat Wang, X., Maake, C., Hauri, D., H, J. (2001). Occurrence of gap junctions in the urinary bladder. European Urology, 39(5 (Suppl)), 154+. Wang, X., Maake, C., Hauri, D., H, J. (2001). Occurrence of gap junctions in the urinary bladder. European Urology, 39(5 (Suppl)), 154+.
Zurück zum Zitat Young, J.S., Brain, K.L., Cunnane, T.C (2007). The origin of the skewed amplitude distribution of spontaneous excitatory junction potentials in poorly coupled smooth muscle cells. Neuroscience, 145(1), 153–161.PubMedCentralPubMedCrossRef Young, J.S., Brain, K.L., Cunnane, T.C (2007). The origin of the skewed amplitude distribution of spontaneous excitatory junction potentials in poorly coupled smooth muscle cells. Neuroscience, 145(1), 153–161.PubMedCentralPubMedCrossRef
Zurück zum Zitat Young, J.S., Meng, E., Cunnane, T.C., Brain, K.L. (2008). Spontaneous purinergic neurotransmission in the mouse urinary bladder. The Journal of Physiology, 586(23), 5743–5755.PubMedCentralPubMedCrossRef Young, J.S., Meng, E., Cunnane, T.C., Brain, K.L. (2008). Spontaneous purinergic neurotransmission in the mouse urinary bladder. The Journal of Physiology, 586(23), 5743–5755.PubMedCentralPubMedCrossRef
Metadaten
Titel
A computational model of urinary bladder smooth muscle syncytium
Validation and investigation of electrical properties
verfasst von
Shailesh Appukuttan
Keith L. Brain
Rohit Manchanda
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2015
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-014-0532-6

Weitere Artikel der Ausgabe 1/2015

Journal of Computational Neuroscience 1/2015 Zur Ausgabe

Premium Partner