Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2015

01.02.2015

A neural mass model of place cell activity: theta phase precession, replay and imagination of never experienced paths

verfasst von: Filippo Cona, Mauro Ursino

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Recent results on hippocampal place cells show that the replay of behavioral sequences does not simply reflect previously experienced trajectories, but may also occur in the reverse direction, or may even include never experienced paths. In order to elucidate the possible mechanisms at the basis of this phenomenon, we have developed a model of sequence learning. The present model consists of two layers of place cell units. Long-range connections among units implement heteroassociation between the two layers, trained with a temporal Hebb rule. The network was trained assuming that a virtual rat moves within a virtual maze. This training leads to the formation of bidirectional synapses between the two layers, i.e. synapses connecting a neuron both with its previous and subsequent element in the path. Subsequently, two distinct conditions were simulated with the trained network. During an exploratory phase, characterized by a similar consideration to the external environment and to the internal representation, the model simulates the occurrence of theta precession in the forward path and the temporal compression. During an imagination phase, when there is no consideration to the external location, the model produces trains of gamma oscillations, without the presence of a theta rhythm, and simulates the occurrence of both direct and reverse replay, and the imagination of never experienced paths. The new paths are built by combining bunches of previous trajectories. The main mechanisms at the basis of this behavior are explained in detail, and lines for future improvements (e.g., to simulate preplay) are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Almeida, L., Idiart, M., & Lisman, J.E. (2007) Memory retrivial time and memory capacity of the CA3 network: role of gamma frequency oscillations. Learning and Memory 14, 795–806. Almeida, L., Idiart, M., & Lisman, J.E. (2007) Memory retrivial time and memory capacity of the CA3 network: role of gamma frequency oscillations. Learning and Memory 14, 795–806.
Zurück zum Zitat Bi, G. Q., & Poo, M. M. (1998). Synaptic modifications in cultured Hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18(24), 10464–72.PubMed Bi, G. Q., & Poo, M. M. (1998). Synaptic modifications in cultured Hippocampal neurons: dependence on spike timing, synaptic strength, and postsynaptic cell type. Journal of Neuroscience, 18(24), 10464–72.PubMed
Zurück zum Zitat Bi, G. Q., & Poo, M. M. (2001). Synaptic modification by correlated activity: Hebb’s postulate revisited. Annual Review of Neuroscience, 24, 139–66.PubMedCrossRef Bi, G. Q., & Poo, M. M. (2001). Synaptic modification by correlated activity: Hebb’s postulate revisited. Annual Review of Neuroscience, 24, 139–66.PubMedCrossRef
Zurück zum Zitat Buzsáki, G. (1989). Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience, 31(3), 551–570.PubMedCrossRef Buzsáki, G. (1989). Two-stage model of memory trace formation: a role for “noisy” brain states. Neuroscience, 31(3), 551–570.PubMedCrossRef
Zurück zum Zitat Cappaert, N. L. M., Lopes da Silva, F. H., & Wadman, W. J. (2009). Spatio-temporal dynamics of theta oscillations in hippocampal-entorhinal slices. Hippocampus, 19(11), 1065–1077. doi:10.1002/hipo.20570.PubMedCrossRef Cappaert, N. L. M., Lopes da Silva, F. H., & Wadman, W. J. (2009). Spatio-temporal dynamics of theta oscillations in hippocampal-entorhinal slices. Hippocampus, 19(11), 1065–1077. doi:10.​1002/​hipo.​20570.PubMedCrossRef
Zurück zum Zitat Colgin, L. L., Denninger, T., Fyhn, M., Hafting, T., Bonnevie, T., Jensen, O., Moser, M., & Moser, E. (2009). Frequency of gamma oscillations routes flow of information in the hippocampus. Nature, 462(7271), 353–7. doi:10.1038/nature08573.PubMedCrossRef Colgin, L. L., Denninger, T., Fyhn, M., Hafting, T., Bonnevie, T., Jensen, O., Moser, M., & Moser, E. (2009). Frequency of gamma oscillations routes flow of information in the hippocampus. Nature, 462(7271), 353–7. doi:10.​1038/​nature08573.PubMedCrossRef
Zurück zum Zitat Cona, F., & Ursino, M. (2013). A multi-layer neural-mass model for learning sequences using theta/gamma oscillations. International Journal of Neural Systems, 23(3), 1–18.CrossRef Cona, F., & Ursino, M. (2013). A multi-layer neural-mass model for learning sequences using theta/gamma oscillations. International Journal of Neural Systems, 23(3), 1–18.CrossRef
Zurück zum Zitat Cona, F., Zavaglia, M., & Ursino, M. (2012). Binding and segmentation via a neural mass model trained with Hebbian and anti-Hebbian mechanisms. International Journal of Neural Systems, 22(02), 1–20. doi:10.1142/S0129065712500037.CrossRef Cona, F., Zavaglia, M., & Ursino, M. (2012). Binding and segmentation via a neural mass model trained with Hebbian and anti-Hebbian mechanisms. International Journal of Neural Systems, 22(02), 1–20. doi:10.​1142/​S012906571250003​7.CrossRef
Zurück zum Zitat Crick, F., & Mitchison, G. (1983). The function of dream sleep. Nature, 304(5922), 111–114.PubMedCrossRef Crick, F., & Mitchison, G. (1983). The function of dream sleep. Nature, 304(5922), 111–114.PubMedCrossRef
Zurück zum Zitat Cutsuridis, V., Cobb, S., & Graham, B. P. (2010). Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus, 20(3), 423–446. doi:10.1002/hipo.20661.PubMed Cutsuridis, V., Cobb, S., & Graham, B. P. (2010). Encoding and retrieval in a model of the hippocampal CA1 microcircuit. Hippocampus, 20(3), 423–446. doi:10.​1002/​hipo.​20661.PubMed
Zurück zum Zitat Ekstrom, A. D., Meltzer, J., McNaughton, B. L., & Barnes, C. A. (2001). NMDA receptor antagonism blocks experience-dependent expansion of hippocampal “place fields.”. Neuron, 31(4), 631–638.PubMedCrossRef Ekstrom, A. D., Meltzer, J., McNaughton, B. L., & Barnes, C. A. (2001). NMDA receptor antagonism blocks experience-dependent expansion of hippocampal “place fields.”. Neuron, 31(4), 631–638.PubMedCrossRef
Zurück zum Zitat Hasselmo, M. E., Bodelón, C., & Wyble, B. P. (2002). A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Computation, 14(4), 793–817. doi:10.1162/089976602317318965.PubMedCrossRef Hasselmo, M. E., Bodelón, C., & Wyble, B. P. (2002). A proposed function for hippocampal theta rhythm: separate phases of encoding and retrieval enhance reversal of prior learning. Neural Computation, 14(4), 793–817. doi:10.​1162/​0899766023173189​65.PubMedCrossRef
Zurück zum Zitat Huxter, J. R., Senior, T. J., Allen, K., & Csicsvari, J. (2008). Theta phase specific codes for two-dimensional position, trajectory and heading in the hippocampus. Nature Neuroscience, 11(5), 587–594.PubMedCrossRef Huxter, J. R., Senior, T. J., Allen, K., & Csicsvari, J. (2008). Theta phase specific codes for two-dimensional position, trajectory and heading in the hippocampus. Nature Neuroscience, 11(5), 587–594.PubMedCrossRef
Zurück zum Zitat Jeewajee, A., Lever, C., Burton, S., O’Keefe, J., & Burgess, N. (2008). Environmental novelty is signaled by reduction of the Hippocampal theta frequency. Hippocampus, 18(4), 340–348.PubMedCentralPubMedCrossRef Jeewajee, A., Lever, C., Burton, S., O’Keefe, J., & Burgess, N. (2008). Environmental novelty is signaled by reduction of the Hippocampal theta frequency. Hippocampus, 18(4), 340–348.PubMedCentralPubMedCrossRef
Zurück zum Zitat Jeewajee, A., Barry, C., Douchamps, V., Manson, D., Lever, C., & Burgess, N. (2013). Theta phase precession and grid and place cell firing in open environments. Phil. Trans. Rol. Soc. B, 369(1635): doi: 10.1098/rstb.2012.0532. Jeewajee, A., Barry, C., Douchamps, V., Manson, D., Lever, C., & Burgess, N. (2013). Theta phase precession and grid and place cell firing in open environments. Phil. Trans. Rol. Soc. B, 369(1635): doi: 10.1098/rstb.2012.0532.
Zurück zum Zitat Jensen, O., & Lisman, J. E. (1996a). Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. Learning & Memory, 3(2–3), 279–287.CrossRef Jensen, O., & Lisman, J. E. (1996a). Hippocampal CA3 region predicts memory sequences: accounting for the phase precession of place cells. Learning & Memory, 3(2–3), 279–287.CrossRef
Zurück zum Zitat Jensen, O., & Lisman, J. E. (1996b). Theta/gamma networks with slow NMDA channels learn sequences and encode episodic memory: role of NMDA channels in recall. Learning & Memory, 3(2–3), 264–278.CrossRef Jensen, O., & Lisman, J. E. (1996b). Theta/gamma networks with slow NMDA channels learn sequences and encode episodic memory: role of NMDA channels in recall. Learning & Memory, 3(2–3), 264–278.CrossRef
Zurück zum Zitat Kloosterman, F., van Haeften, T., & Lopes da Silva, F. H. (2004). Two reentrant pathways in the hippocampal-entorhinal system. Hippocampus, 14(8), 1026–1039.PubMedCrossRef Kloosterman, F., van Haeften, T., & Lopes da Silva, F. H. (2004). Two reentrant pathways in the hippocampal-entorhinal system. Hippocampus, 14(8), 1026–1039.PubMedCrossRef
Zurück zum Zitat Lee, A. K., & Wilson, M. A. (2002). Memory of sequential experience in the hippocampus during slow wave sleep. Neuron, 36(6), 1183–1194.PubMedCrossRef Lee, A. K., & Wilson, M. A. (2002). Memory of sequential experience in the hippocampus during slow wave sleep. Neuron, 36(6), 1183–1194.PubMedCrossRef
Zurück zum Zitat Lengyel, M., Szatmáry, Z., & Erdi, P. (2003). Dynamically detuned oscillations account for the coupled rate and temporal code of place cell firing. Hippocampus, 13(6), 700–714. doi:10.1002/hipo.10116.PubMedCrossRef Lengyel, M., Szatmáry, Z., & Erdi, P. (2003). Dynamically detuned oscillations account for the coupled rate and temporal code of place cell firing. Hippocampus, 13(6), 700–714. doi:10.​1002/​hipo.​10116.PubMedCrossRef
Zurück zum Zitat Lisman, J. E. (1999). Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentate-CA3 interactions. Neuron, 22(2), 233–242.PubMedCrossRef Lisman, J. E. (1999). Relating hippocampal circuitry to function: recall of memory sequences by reciprocal dentate-CA3 interactions. Neuron, 22(2), 233–242.PubMedCrossRef
Zurück zum Zitat Louie, K., & Wilson, M. A. (2001). Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron, 29(1), 145–156.PubMedCrossRef Louie, K., & Wilson, M. A. (2001). Temporally structured replay of awake hippocampal ensemble activity during rapid eye movement sleep. Neuron, 29(1), 145–156.PubMedCrossRef
Zurück zum Zitat Mehta, M. R., Barnes, C. A., & McNaughton, B. L. (1997). Experience-dependent, asymmetric expansion of hippocampal place fields. Proceedings of the National Academy of Sciences of the United States of America, 94(16), 8918–8921.PubMedCentralPubMedCrossRef Mehta, M. R., Barnes, C. A., & McNaughton, B. L. (1997). Experience-dependent, asymmetric expansion of hippocampal place fields. Proceedings of the National Academy of Sciences of the United States of America, 94(16), 8918–8921.PubMedCentralPubMedCrossRef
Zurück zum Zitat Mitchell, S. J., & Ranck, J. B., Jr. (1980). Generation of theta rhythm in medial entorhinal cortex of freely moving rats. Brain Research, 189(1), 49–66.PubMedCrossRef Mitchell, S. J., & Ranck, J. B., Jr. (1980). Generation of theta rhythm in medial entorhinal cortex of freely moving rats. Brain Research, 189(1), 49–66.PubMedCrossRef
Zurück zum Zitat Mizuseki, K., Sirota, A., Pastalkova, E., & Buzsáki, G. (2009). Theta oscillations provide temporal windows for local circuit computation in the entorhinal-Hippocampal loop. Neuron, 64(2), 267–280.PubMedCentralPubMedCrossRef Mizuseki, K., Sirota, A., Pastalkova, E., & Buzsáki, G. (2009). Theta oscillations provide temporal windows for local circuit computation in the entorhinal-Hippocampal loop. Neuron, 64(2), 267–280.PubMedCentralPubMedCrossRef
Zurück zum Zitat Montgomery, S. M., Betancur, M. I., & Buzsáki, G. (2009). Behavior-dependent coordination of multiple theta dipoles in the hippocampus. Journal of Neuroscience, 29(5), 1381–1394.PubMedCentralPubMedCrossRef Montgomery, S. M., Betancur, M. I., & Buzsáki, G. (2009). Behavior-dependent coordination of multiple theta dipoles in the hippocampus. Journal of Neuroscience, 29(5), 1381–1394.PubMedCentralPubMedCrossRef
Zurück zum Zitat Morris, R. G., Garrud, P., Rawlins, J. N., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681–683.PubMedCrossRef Morris, R. G., Garrud, P., Rawlins, J. N., & O’Keefe, J. (1982). Place navigation impaired in rats with hippocampal lesions. Nature, 297(5868), 681–683.PubMedCrossRef
Zurück zum Zitat Nádasdy, Z., Hirase, H., Czurkó, A., Csicsvari, J., & Buzsáki, G. (1999). Replay and time compression of recurring spike sequences in the hippocampus. The Journal of Neuroscience, 19(21), 9497–9507.PubMed Nádasdy, Z., Hirase, H., Czurkó, A., Csicsvari, J., & Buzsáki, G. (1999). Replay and time compression of recurring spike sequences in the hippocampus. The Journal of Neuroscience, 19(21), 9497–9507.PubMed
Zurück zum Zitat O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171–175.PubMedCrossRef O’Keefe, J., & Dostrovsky, J. (1971). The hippocampus as a spatial map. Preliminary evidence from unit activity in the freely-moving rat. Brain Research, 34(1), 171–175.PubMedCrossRef
Zurück zum Zitat Skaggs, W. E., McNaughton, B. L., Wilson, M. A., & Barnes, C. A. (1996). Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus, 6(2), 149–172.PubMedCrossRef Skaggs, W. E., McNaughton, B. L., Wilson, M. A., & Barnes, C. A. (1996). Theta phase precession in hippocampal neuronal populations and the compression of temporal sequences. Hippocampus, 6(2), 149–172.PubMedCrossRef
Zurück zum Zitat Squire, L. R., & Alvarez, P. (1995). Retrograde amnesia and memory consolidation: a neurobiological perspective. Current Opinion in Neurobiology, 5(2), 169–177.PubMedCrossRef Squire, L. R., & Alvarez, P. (1995). Retrograde amnesia and memory consolidation: a neurobiological perspective. Current Opinion in Neurobiology, 5(2), 169–177.PubMedCrossRef
Zurück zum Zitat Taube, J. S., Muller, R. U., & Ranck, J. B. J. (1990). Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. The Journal of Neuroscience, 10(2), 420–435.PubMed Taube, J. S., Muller, R. U., & Ranck, J. B. J. (1990). Head-direction cells recorded from the postsubiculum in freely moving rats. I. Description and quantitative analysis. The Journal of Neuroscience, 10(2), 420–435.PubMed
Zurück zum Zitat Tsodyks, M. V., Skaggs, W. E., Sejnowski, T. J., & McNaughton, B. L. (1996). Population dynamics and theta rhythm phase precession of hippocampal place cell firing: a spiking neuron mode. Hippocampus, 6(3), 271–280.PubMedCrossRef Tsodyks, M. V., Skaggs, W. E., Sejnowski, T. J., & McNaughton, B. L. (1996). Population dynamics and theta rhythm phase precession of hippocampal place cell firing: a spiking neuron mode. Hippocampus, 6(3), 271–280.PubMedCrossRef
Zurück zum Zitat Ursino, M., Cona, F., & Zavaglia, M. (2010). The generation of rhythms within a cortical region: analysis of a neural mass model. NeuroImage, 52(3), 1080–1094.PubMedCrossRef Ursino, M., Cona, F., & Zavaglia, M. (2010). The generation of rhythms within a cortical region: analysis of a neural mass model. NeuroImage, 52(3), 1080–1094.PubMedCrossRef
Zurück zum Zitat Wallenstein, G. V., & Hasselmo, M. E. (1997). GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. Journal of Neurophysiology, 78(1), 393–408.PubMed Wallenstein, G. V., & Hasselmo, M. E. (1997). GABAergic modulation of hippocampal population activity: sequence learning, place field development, and the phase precession effect. Journal of Neurophysiology, 78(1), 393–408.PubMed
Zurück zum Zitat Wilson, M. A., & McNaughton, B. L. (1993). Dynamics of the hippocampal ensemble code for space. Science, 261(5124), 1055–1058.PubMedCrossRef Wilson, M. A., & McNaughton, B. L. (1993). Dynamics of the hippocampal ensemble code for space. Science, 261(5124), 1055–1058.PubMedCrossRef
Metadaten
Titel
A neural mass model of place cell activity: theta phase precession, replay and imagination of never experienced paths
verfasst von
Filippo Cona
Mauro Ursino
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2015
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-014-0533-5

Weitere Artikel der Ausgabe 1/2015

Journal of Computational Neuroscience 1/2015 Zur Ausgabe

Premium Partner