Skip to main content
Erschienen in: Journal of Computational Neuroscience 1/2015

01.02.2015

Stochastic representations of ion channel kinetics and exact stochastic simulation of neuronal dynamics

verfasst von: David F. Anderson, Bard Ermentrout, Peter J. Thomas

Erschienen in: Journal of Computational Neuroscience | Ausgabe 1/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper we provide two representations for stochastic ion channel kinetics, and compare the performance of exact simulation with a commonly used numerical approximation strategy. The first representation we present is a random time change representation, popularized by Thomas Kurtz, with the second being analogous to a “Gillespie” representation. Exact stochastic algorithms are provided for the different representations, which are preferable to either (a) fixed time step or (b) piecewise constant propensity algorithms, which still appear in the literature. As examples, we provide versions of the exact algorithms for the Morris-Lecar conductance based model, and detail the error induced, both in a weak and a strong sense, by the use of approximate algorithms on this model. We include ready-to-use implementations of the random time change algorithm in both XPP and Matlab. Finally, through the consideration of parametric sensitivity analysis, we show how the representations presented here are useful in the development of further computational methods. The general representations and simulation strategies provided here are known in other parts of the sciences, but less so in the present setting.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
For an early statement of an exact algorithm for the hybrid case in a neuroscience context see ((Clay and DeFelice 1983), Equations (2)–(3)). Strassberg and DeFelice further investigated circumstances under which it is possible for random microscopic events (single ion channel state transitions) to generate random macroscopic events (action potentials) (Strassberg and DeFelice 1993) using an exact simulation algorithm. Bressloff, Keener, and Newby used an exact algorithm in a recent study of channel noise dependent action potential generation in the Morris-Lecar model (Keener and Newby 2011; Newby et al. 2013). For a detailed introduction to stochastic ion channel models, see (Groff et al. 2009; Smith and Keizer 2002).
 
2
Morris and Lecar used a value of g K = 8mmho/cm2 for the specific potassium conductance, corresponding to 80 picoSiemens (pS) per square micron (Morris and Lecar 1981). The single channel conductance is determined by the structure of the potassium channel, and varies somewhat from species to species. However, conductances around 20 pS are typical (Shingai and Quandt 1986), which would give a density estimate of roughly 40 channels for a 10 square micron patch of cell membrane.
 
Literatur
Zurück zum Zitat Alfonsi, A., Cancès E., Turinici, G., Di Ventura, B., Huisinga, W. (2005). Adaptive simulation of hybrid stochastic and deterministic models for biochemical systems. In ESAIM: Proceedings (Vol. 14, pp. 1–13). EDP Sciences Alfonsi, A., Cancès E., Turinici, G., Di Ventura, B., Huisinga, W. (2005). Adaptive simulation of hybrid stochastic and deterministic models for biochemical systems. In ESAIM: Proceedings (Vol. 14, pp. 1–13). EDP Sciences
Zurück zum Zitat Anderson, D.F. (2007). A modified next reaction method for simulating chemical systems with time dependent propensities and delays. Journal of Chemical Physics, 127(21), 214107.PubMedCrossRef Anderson, D.F. (2007). A modified next reaction method for simulating chemical systems with time dependent propensities and delays. Journal of Chemical Physics, 127(21), 214107.PubMedCrossRef
Zurück zum Zitat Anderson, D.F. (2012). An efficient finite difference method for parameter sensitivities of continuous time Markov chains. SIAM Journal on Numerical Analysis, 50(5), 2237–2258.CrossRef Anderson, D.F. (2012). An efficient finite difference method for parameter sensitivities of continuous time Markov chains. SIAM Journal on Numerical Analysis, 50(5), 2237–2258.CrossRef
Zurück zum Zitat Anderson, D.F., Ganguly, A., Kurtz, T.G. (2011). Error analysis of tau-leap simulation methods. Annals of Applied Probability, 21(6), 2226–2262.CrossRef Anderson, D.F., Ganguly, A., Kurtz, T.G. (2011). Error analysis of tau-leap simulation methods. Annals of Applied Probability, 21(6), 2226–2262.CrossRef
Zurück zum Zitat Anderson, D.F., & Higham, D.J. (2012). Multi-level Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics. SIAM: Multiscale Modeling and Simulation, 10(1), 146–179. Anderson, D.F., & Higham, D.J. (2012). Multi-level Monte Carlo for continuous time Markov chains, with applications in biochemical kinetics. SIAM: Multiscale Modeling and Simulation, 10(1), 146–179.
Zurück zum Zitat Anderson, D.F., Higham, D.J., Sun, Y. (2014). Complexity analysis of multilevel monte carlo tau-leaping. Submitted. Anderson, D.F., Higham, D.J., Sun, Y. (2014). Complexity analysis of multilevel monte carlo tau-leaping. Submitted.
Zurück zum Zitat Anderson, D.F., & Koyama, M. (2014). An asymptotic relationship between coupling methods for stochastically modeled population processes. Accepted for publication to IMA Journal of Numerical Analysis. Anderson, D.F., & Koyama, M. (2014). An asymptotic relationship between coupling methods for stochastically modeled population processes. Accepted for publication to IMA Journal of Numerical Analysis.
Zurück zum Zitat Anderson, D.F., & Kurtz, T.G. (2011). Design and analysis of biomolecular circuits, chapter 1. Continuous Time Markov chain models for chemical reaction networks. Springer. Anderson, D.F., & Kurtz, T.G. (2011). Design and analysis of biomolecular circuits, chapter 1. Continuous Time Markov chain models for chemical reaction networks. Springer.
Zurück zum Zitat Anderson, D.F., & Wolf, E.S. (2012). A finite difference method for estimating second order parameter sensitivities of discrete stochastic chemical reaction networks. Journal of Chemical Physics, 137(22), 224112.PubMedCrossRef Anderson, D.F., & Wolf, E.S. (2012). A finite difference method for estimating second order parameter sensitivities of discrete stochastic chemical reaction networks. Journal of Chemical Physics, 137(22), 224112.PubMedCrossRef
Zurück zum Zitat Ball, K., Kurtz, T.G., Popovic, L., Rempala, G. (2006). Asymptotic analysis of multiscale approximations to reaction networks. Annals of Applied Probability, 16(4), 1925–1961.CrossRef Ball, K., Kurtz, T.G., Popovic, L., Rempala, G. (2006). Asymptotic analysis of multiscale approximations to reaction networks. Annals of Applied Probability, 16(4), 1925–1961.CrossRef
Zurück zum Zitat Bressloff, P.C. (2009). Stochastic neural field theory and the system-size expansion. SIAM Journal on Applied Mathematics, 70(5), 1488–1521.CrossRef Bressloff, P.C. (2009). Stochastic neural field theory and the system-size expansion. SIAM Journal on Applied Mathematics, 70(5), 1488–1521.CrossRef
Zurück zum Zitat Bressloff, P.C., & Newby, J.M. (2013). Metastability in a stochastic neural network modeled as a velocity jump Markov process. SIAM Journal on Applied Dynamical Systems, 12(3), 1394–1435.CrossRef Bressloff, P.C., & Newby, J.M. (2013). Metastability in a stochastic neural network modeled as a velocity jump Markov process. SIAM Journal on Applied Dynamical Systems, 12(3), 1394–1435.CrossRef
Zurück zum Zitat Bressloff, P.C., & Newby, J.M. (2014a). Stochastic hybrid model of spontaneous dendritic NMDA spikes. Physical Biology, 11(1), 016006.PubMedCrossRef Bressloff, P.C., & Newby, J.M. (2014a). Stochastic hybrid model of spontaneous dendritic NMDA spikes. Physical Biology, 11(1), 016006.PubMedCrossRef
Zurück zum Zitat Bressloff, P.C., & Newby, J.M. (2014b). Path integrals and large deviations in stochastic hybrid systems. Physical Review E, 89(4), 042701.CrossRef Bressloff, P.C., & Newby, J.M. (2014b). Path integrals and large deviations in stochastic hybrid systems. Physical Review E, 89(4), 042701.CrossRef
Zurück zum Zitat Buckwar, E., & Riedler, M.G. (2011). An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution. Journal of Mathematical Biology, 63, 1051–1093.PubMedCrossRef Buckwar, E., & Riedler, M.G. (2011). An exact stochastic hybrid model of excitable membranes including spatio-temporal evolution. Journal of Mathematical Biology, 63, 1051–1093.PubMedCrossRef
Zurück zum Zitat Buice, M.A., Cowan, J.D., Chow, C.C. (2010). Systematic fluctuation expansion for neural network activity equations. Neural Computation, 22(2), 377–426.PubMedCentralPubMedCrossRef Buice, M.A., Cowan, J.D., Chow, C.C. (2010). Systematic fluctuation expansion for neural network activity equations. Neural Computation, 22(2), 377–426.PubMedCentralPubMedCrossRef
Zurück zum Zitat Cao, Y., Gillespie, D.T., Petzold, L.R. (2006). Efficient step size selection for the tau-leaping simulation method. Journal of Chemical Physics, 124(4), 044109.PubMedCrossRef Cao, Y., Gillespie, D.T., Petzold, L.R. (2006). Efficient step size selection for the tau-leaping simulation method. Journal of Chemical Physics, 124(4), 044109.PubMedCrossRef
Zurück zum Zitat Clay, J.R., & DeFelice, L.J. (1983). Relationship between membrane excitability and single channel open-close kinetics. Biophysical Journal, 42(2), 151–7.PubMedCentralPubMedCrossRef Clay, J.R., & DeFelice, L.J. (1983). Relationship between membrane excitability and single channel open-close kinetics. Biophysical Journal, 42(2), 151–7.PubMedCentralPubMedCrossRef
Zurück zum Zitat Colquhoun, D., & Hawkes, A.G. (1983). Single-channel recording, chapter the principles of the stochastic interpretation of ion-channel mechanisms. New York: Plenum Press. Colquhoun, D., & Hawkes, A.G. (1983). Single-channel recording, chapter the principles of the stochastic interpretation of ion-channel mechanisms. New York: Plenum Press.
Zurück zum Zitat Davis, M.H.A. (1984). Piecewise-deterministic markov processes: a general class of non-diffusion stochastic models. Journal of the Royal Statistical Society. Series B, 46(3), 353–388. Davis, M.H.A. (1984). Piecewise-deterministic markov processes: a general class of non-diffusion stochastic models. Journal of the Royal Statistical Society. Series B, 46(3), 353–388.
Zurück zum Zitat Dorval, Jr., A.D., & White, J.A. (2005). Channel noise is essential for perithreshold oscillations in entorhinal stellate neurons. The Journal of Neuroscience, 25(43), 10025–10028.PubMedCrossRef Dorval, Jr., A.D., & White, J.A. (2005). Channel noise is essential for perithreshold oscillations in entorhinal stellate neurons. The Journal of Neuroscience, 25(43), 10025–10028.PubMedCrossRef
Zurück zum Zitat Earnshaw, B.A., & Keener, J.P. (2010). Invariant manifolds of binomial-like nonautonomous master equations. SIAM Journal Applied Dynamical Systems, 9(2), 568–588.CrossRef Earnshaw, B.A., & Keener, J.P. (2010). Invariant manifolds of binomial-like nonautonomous master equations. SIAM Journal Applied Dynamical Systems, 9(2), 568–588.CrossRef
Zurück zum Zitat Ermentrout, G.B., & Terman, D.H. (2010). Foundations of mathematical neuroscience. Springer. Ermentrout, G.B., & Terman, D.H. (2010). Foundations of mathematical neuroscience. Springer.
Zurück zum Zitat Ethier, S.N., & Kurtz, T.G. (1986). Markov processes: characterization and convergence. New York: John Wiley.CrossRef Ethier, S.N., & Kurtz, T.G. (1986). Markov processes: characterization and convergence. New York: John Wiley.CrossRef
Zurück zum Zitat Fisch, K., Schwalger, T., Lindner, B., Herz, A.V.M., Benda, J. (2012). Channel noise from both slow adaptation currents and fast currents is required to explain spike-response variability in a sensory neuron. Journal of Neuroscience, 32(48), 17332–44.PubMedCrossRef Fisch, K., Schwalger, T., Lindner, B., Herz, A.V.M., Benda, J. (2012). Channel noise from both slow adaptation currents and fast currents is required to explain spike-response variability in a sensory neuron. Journal of Neuroscience, 32(48), 17332–44.PubMedCrossRef
Zurück zum Zitat Fox, R.F., & Yan-nan, L. (1994). Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Physical Review E Statistical Physics Plasmas Fluids Related Interdisciplinary Topics, 49(4), 3421– 3431. Fox, R.F., & Yan-nan, L. (1994). Emergent collective behavior in large numbers of globally coupled independently stochastic ion channels. Physical Review E Statistical Physics Plasmas Fluids Related Interdisciplinary Topics, 49(4), 3421– 3431.
Zurück zum Zitat Giles, M.B. (2008). Multilevel Monte Carlo path simulation. Operations Research, 56, 607–617.CrossRef Giles, M.B. (2008). Multilevel Monte Carlo path simulation. Operations Research, 56, 607–617.CrossRef
Zurück zum Zitat Gillespie, D.T. (1977). Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry, 81, 2340–2361.CrossRef Gillespie, D.T. (1977). Exact stochastic simulation of coupled chemical reactions. Journal of Physical Chemistry, 81, 2340–2361.CrossRef
Zurück zum Zitat Gillespie, D.T. (2007). Stochastic simulation of chemical kinetics. Annual Review of Physical Chemistry, 58, 35–55.PubMedCrossRef Gillespie, D.T. (2007). Stochastic simulation of chemical kinetics. Annual Review of Physical Chemistry, 58, 35–55.PubMedCrossRef
Zurück zum Zitat Glynn, P.W. (1989). A GSMP formalism for discrete event systems. Proceedings of the IEEE, 77(1), 14–23.CrossRef Glynn, P.W. (1989). A GSMP formalism for discrete event systems. Proceedings of the IEEE, 77(1), 14–23.CrossRef
Zurück zum Zitat Goldwyn, J.H., Imennov, N.S., Famulare, M., Shea-Brown, E. (2011). Stochastic differential equation models for ion channel noise in hodgkin-huxley neurons. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 83(4 Pt 1), 041908.PubMedCentralPubMedCrossRef Goldwyn, J.H., Imennov, N.S., Famulare, M., Shea-Brown, E. (2011). Stochastic differential equation models for ion channel noise in hodgkin-huxley neurons. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 83(4 Pt 1), 041908.PubMedCentralPubMedCrossRef
Zurück zum Zitat Goldwyn, J.H., Shea-Brown, E. (2011). The what and where of adding channel noise to the Hodgkin-Huxley equations. PLoS Computational Biology, 7(11), e1002247.PubMedCentralPubMedCrossRef Goldwyn, J.H., Shea-Brown, E. (2011). The what and where of adding channel noise to the Hodgkin-Huxley equations. PLoS Computational Biology, 7(11), e1002247.PubMedCentralPubMedCrossRef
Zurück zum Zitat Groff, J.R., DeRemigio, H., Smith G.D. (2009). Markov chain models of ion channels and calcium release sites. In Stochastic Methods in neuroscience (pp. 29–64). Groff, J.R., DeRemigio, H., Smith G.D. (2009). Markov chain models of ion channels and calcium release sites. In Stochastic Methods in neuroscience (pp. 29–64).
Zurück zum Zitat Haas, P.J. (2002). Stochastic petri nets: modelling stability, simulation, 1st edn. New York: Springer.CrossRef Haas, P.J. (2002). Stochastic petri nets: modelling stability, simulation, 1st edn. New York: Springer.CrossRef
Zurück zum Zitat Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.PubMedCentralPubMedCrossRef Hodgkin, A.L., & Huxley, A.F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117, 500–544.PubMedCentralPubMedCrossRef
Zurück zum Zitat Kang, H.W., & Kurtz, T.G. (2013). Separation of time-scales and model reduction for stochastic reaction models. Annals of Applied Probability, 23, 529–583.CrossRef Kang, H.W., & Kurtz, T.G. (2013). Separation of time-scales and model reduction for stochastic reaction models. Annals of Applied Probability, 23, 529–583.CrossRef
Zurück zum Zitat Keener, J.P., & Newby, J.M. (2011). Perturbation analysis of spontaneous action potential initiation by stochastic ion channels. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 84(1-1), 011918.PubMedCrossRef Keener, J.P., & Newby, J.M. (2011). Perturbation analysis of spontaneous action potential initiation by stochastic ion channels. Physical Review. E, Statistical, Nonlinear, and Soft Matter Physics, 84(1-1), 011918.PubMedCrossRef
Zurück zum Zitat Kispersky, T., & White, J.A. (2008). Stochastic models of ion channel gating. Scholarpedia, 3(1), 1327.CrossRef Kispersky, T., & White, J.A. (2008). Stochastic models of ion channel gating. Scholarpedia, 3(1), 1327.CrossRef
Zurück zum Zitat Kurtz, T.G. (1980). Representations of markov processes as multiparameter time changes. Annals of Probability, 8(4), 682–715.CrossRef Kurtz, T.G. (1980). Representations of markov processes as multiparameter time changes. Annals of Probability, 8(4), 682–715.CrossRef
Zurück zum Zitat Kurtz, T.G. (1981). Approximation of population processes, CBMS-NSF Reg. Conf. Series in Appl. Math.: 36, SIAM. Kurtz, T.G. (1981). Approximation of population processes, CBMS-NSF Reg. Conf. Series in Appl. Math.: 36, SIAM.
Zurück zum Zitat Laing, C., & Lord, G.J. (Eds.) 2010. Stochastic methods in neuroscience. Oxford University Press. Laing, C., & Lord, G.J. (Eds.) 2010. Stochastic methods in neuroscience. Oxford University Press.
Zurück zum Zitat Milescu, L.S., Yamanishi, T., Ptak, K., Smith, J.C. (2010). Kinetic properties and functional dynamics of sodium channels during repetitive spiking in a slow pacemaker neuron. Journal of Neuroscience, 30(36), 12113–27.PubMedCentralPubMedCrossRef Milescu, L.S., Yamanishi, T., Ptak, K., Smith, J.C. (2010). Kinetic properties and functional dynamics of sodium channels during repetitive spiking in a slow pacemaker neuron. Journal of Neuroscience, 30(36), 12113–27.PubMedCentralPubMedCrossRef
Zurück zum Zitat Mino, H., Rubinstein, J.T., White, J.A. (2002). Comparison of algorithms for the simulation of action potentials with stochastic sodium channels. Annals of Biomedical Engineering, 30(4), 578–87.PubMedCrossRef Mino, H., Rubinstein, J.T., White, J.A. (2002). Comparison of algorithms for the simulation of action potentials with stochastic sodium channels. Annals of Biomedical Engineering, 30(4), 578–87.PubMedCrossRef
Zurück zum Zitat Newby, J.M., Bressloff, P.C., Keener, J.P. (2013). Breakdown of fast-slow analysis in an excitable system with channel noise. Physical Review Letters, 111(12), 128101.PubMedCrossRef Newby, J.M., Bressloff, P.C., Keener, J.P. (2013). Breakdown of fast-slow analysis in an excitable system with channel noise. Physical Review Letters, 111(12), 128101.PubMedCrossRef
Zurück zum Zitat Pakdaman, K., Thieullen, M., Wainrib, G. (2010). Fluid limit theorems for stochastic hybrid systems with application to neuron models. Advances in Applied Probability, 42(3), 761–794.CrossRef Pakdaman, K., Thieullen, M., Wainrib, G. (2010). Fluid limit theorems for stochastic hybrid systems with application to neuron models. Advances in Applied Probability, 42(3), 761–794.CrossRef
Zurück zum Zitat Pakdaman, K., Thieullen, M., Wainrib, G. (2012). Asymptotic expansion and central limit theorem for multiscale piecewise-deterministic Markov processes. Stochastic Proceedings of Applied, 122, 2292–2318.CrossRef Pakdaman, K., Thieullen, M., Wainrib, G. (2012). Asymptotic expansion and central limit theorem for multiscale piecewise-deterministic Markov processes. Stochastic Proceedings of Applied, 122, 2292–2318.CrossRef
Zurück zum Zitat Rathinam, M., Sheppard, P.W., Khammash, M. (2010). Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks. Journal of Chemical Physics, 132, 034103.PubMedCentralPubMedCrossRef Rathinam, M., Sheppard, P.W., Khammash, M. (2010). Efficient computation of parameter sensitivities of discrete stochastic chemical reaction networks. Journal of Chemical Physics, 132, 034103.PubMedCentralPubMedCrossRef
Zurück zum Zitat Riedler, M., & Notarangelo, G. (2013). Strong Error Analysis for the Θ-Method for Stochastic Hybrid Systems arXiv preprint. arXiv:1310.0392. Riedler, M., & Notarangelo, G. (2013). Strong Error Analysis for the Θ-Method for Stochastic Hybrid Systems arXiv preprint. arXiv:1310.​0392.
Zurück zum Zitat Riedler, M.G., Thieullen, M., Wainrib, G. (2012). Limit theorems for infinite-dimensional piecewise deterministic Markov processes. Applications to stochastic excitable membrane models. Electronic Journal of Probability, 17(55), 1–48. Riedler, M.G., Thieullen, M., Wainrib, G. (2012). Limit theorems for infinite-dimensional piecewise deterministic Markov processes. Applications to stochastic excitable membrane models. Electronic Journal of Probability, 17(55), 1–48.
Zurück zum Zitat Rinzel, J., & Ermentrout, G.B. (1989). Analysis of neural excitability and oscillations. In: C. Koch, & I. Segev (Eds.) Methods in Neuronal Modeling, 2nd ed. MIT Press. Rinzel, J., & Ermentrout, G.B. (1989). Analysis of neural excitability and oscillations. In: C. Koch, & I. Segev (Eds.) Methods in Neuronal Modeling, 2nd ed. MIT Press.
Zurück zum Zitat Terman, D., & Rubin, J. (2002). Geometric singular pertubation analysis of neuronal dynamics. In B. Fiedler (Ed.), Handbook of dynamical systems, vol. 2: towards applications (pp. 93–146). Elsevier. Terman, D., & Rubin, J. (2002). Geometric singular pertubation analysis of neuronal dynamics. In B. Fiedler (Ed.), Handbook of dynamical systems, vol. 2: towards applications (pp. 93–146). Elsevier.
Zurück zum Zitat Schmandt, N.T., & Galán, R.F. (2012). Stochastic-shielding approximation of Markov chains and its application to efficiently simulate random ion-channel gating. Physical Review Letters, 109(11), 118101.PubMedCrossRef Schmandt, N.T., & Galán, R.F. (2012). Stochastic-shielding approximation of Markov chains and its application to efficiently simulate random ion-channel gating. Physical Review Letters, 109(11), 118101.PubMedCrossRef
Zurück zum Zitat Schmidt, D.R., & Thomas, P.J. (2014). Measuring edge importance: a quantitative analysis of the stochastic shielding approximation for random processes on graphs. The Journal of Mathematical Neuroscience, 4(1), 6.CrossRef Schmidt, D.R., & Thomas, P.J. (2014). Measuring edge importance: a quantitative analysis of the stochastic shielding approximation for random processes on graphs. The Journal of Mathematical Neuroscience, 4(1), 6.CrossRef
Zurück zum Zitat Schwalger, T., Fisch, K., Benda, J., Lindner, B. (2010). How noisy adaptation of neurons shapes interspike interval histograms and correlations. PLoS Computers in Biology, 6(12), e1001026.CrossRef Schwalger, T., Fisch, K., Benda, J., Lindner, B. (2010). How noisy adaptation of neurons shapes interspike interval histograms and correlations. PLoS Computers in Biology, 6(12), e1001026.CrossRef
Zurück zum Zitat Shingai, R., Quandt, F.N. (1986). Single inward rectifier channels in horizontal cells. Brain Research, 369(1-2), 65–74.PubMedCrossRef Shingai, R., Quandt, F.N. (1986). Single inward rectifier channels in horizontal cells. Brain Research, 369(1-2), 65–74.PubMedCrossRef
Zurück zum Zitat Skaugen, E., & Walløse, L. (1979). Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin-Huxley equations. Acta Physiologica Scandinavica, 107(4), 343–63.PubMedCrossRef Skaugen, E., & Walløse, L. (1979). Firing behaviour in a stochastic nerve membrane model based upon the Hodgkin-Huxley equations. Acta Physiologica Scandinavica, 107(4), 343–63.PubMedCrossRef
Zurück zum Zitat Smith, G.D., Keizer, J. (2002). Modeling the stochastic gating of ion channels. In Computational cell biology (pp. 285–319). New York: Springer. Smith, G.D., Keizer, J. (2002). Modeling the stochastic gating of ion channels. In Computational cell biology (pp. 285–319). New York: Springer.
Zurück zum Zitat Srivastava, R., Anderson, D.F., Rawlings, J.B. (2013). Comparison of finite difference based methods to obtain sensitivities of stochastic chemical kinetic models. Journal of Chemical Physics, 138(7), 074110.PubMedCentralPubMedCrossRef Srivastava, R., Anderson, D.F., Rawlings, J.B. (2013). Comparison of finite difference based methods to obtain sensitivities of stochastic chemical kinetic models. Journal of Chemical Physics, 138(7), 074110.PubMedCentralPubMedCrossRef
Zurück zum Zitat Strassberg, A.F., & DeFelice, L.J. (1993). Limitations of the Hodgkin-Huxley formalism: Effects of single channel kinetics on transmebrane voltage dynamics. Neural Computation, 5, 843–855.CrossRef Strassberg, A.F., & DeFelice, L.J. (1993). Limitations of the Hodgkin-Huxley formalism: Effects of single channel kinetics on transmebrane voltage dynamics. Neural Computation, 5, 843–855.CrossRef
Zurück zum Zitat Wainrib, G., Thieullen, M., Pakdaman, K. (2012). Reduction of stochastic conductance-based neuron models with time-scales separation. Journal of Computational Neuroscience, 32, 327–346.CrossRef Wainrib, G., Thieullen, M., Pakdaman, K. (2012). Reduction of stochastic conductance-based neuron models with time-scales separation. Journal of Computational Neuroscience, 32, 327–346.CrossRef
Zurück zum Zitat White, J.A., Chow, C.C., Ritt, J., Soto-Trevino, C., Kopell, N. (1998). Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. Journal of Computational Neuroscience, 5, 5–16.PubMedCrossRef White, J.A., Chow, C.C., Ritt, J., Soto-Trevino, C., Kopell, N. (1998). Synchronization and oscillatory dynamics in heterogeneous, mutually inhibited neurons. Journal of Computational Neuroscience, 5, 5–16.PubMedCrossRef
Zurück zum Zitat White, J.A., Rubinstein, J.T., Kay, A.R. (2000). Channel noise in neurons. Trends in Neurosciences, 23, 131–137.PubMedCrossRef White, J.A., Rubinstein, J.T., Kay, A.R. (2000). Channel noise in neurons. Trends in Neurosciences, 23, 131–137.PubMedCrossRef
Zurück zum Zitat Wilkinson, D.J. (2011). Stochastic modelling for systems biology. Chapman & Hall/CRC. Wilkinson, D.J. (2011). Stochastic modelling for systems biology. Chapman & Hall/CRC.
Metadaten
Titel
Stochastic representations of ion channel kinetics and exact stochastic simulation of neuronal dynamics
verfasst von
David F. Anderson
Bard Ermentrout
Peter J. Thomas
Publikationsdatum
01.02.2015
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 1/2015
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-014-0528-2

Weitere Artikel der Ausgabe 1/2015

Journal of Computational Neuroscience 1/2015 Zur Ausgabe

Premium Partner