Skip to main content
Erschienen in: Journal of Materials Science 18/2017

13.06.2017 | Metals

A data-driven machine learning approach to predicting stacking faulting energy in austenitic steels

verfasst von: N. Chaudhary, A. Abu-Odeh, I. Karaman, R. Arróyave

Erschienen in: Journal of Materials Science | Ausgabe 18/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Stacking fault energy (SFE) is an intrinsic material property whose value is crucial in determining different secondary deformation mechanisms in austenitic (face-centered cubic, fcc) steels. Considerable experimental and computational work suggests that the SFE itself is highly dependent—in a complex manner—on chemical composition and temperature. Over the past decades, there have been a large number of efforts focused on determining the composition dependence of SFE in austenitic steel alloys by means of experimental, theoretical or computational methods. Unfortunately, experimental methods suffer from the indirect nature of the methodologies used to estimate the value of SFE, while computational and/or theoretical approaches are either limited by the physics that they can incorporate into the predictions or have more practical limitations associated, for example, to the size of the systems that can be modeled or the assumptions that must be made. In this paper, we review the major experimental and computational approaches to determine SFE in austenitic steel alloys, and we discuss their limitations. We then demonstrate a data-driven machine learning technique to mine the literature of experimental SFE data in steels, while algorithms at the fore-front of machine learning have been used to visualize the SFE data and then construct a three-class classifier. The classifier is used then to predict likely secondary deformation mechanisms of untested compositions, while the classifier itself is presented as a valuable tool for the further development of austenitic steel alloys in which the specific secondary plastic deformation mechanisms are a feature to design for. The data as well as the entire analysis workflow are made available to the wider community through a public github repository.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Grässel O, Krüger L, Frommeyer G, Meyer LW (2000) High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application. Int J Plast 16:1391–1409CrossRef Grässel O, Krüger L, Frommeyer G, Meyer LW (2000) High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development—properties—application. Int J Plast 16:1391–1409CrossRef
2.
Zurück zum Zitat Allain S, Chateau JP, Bouaziz O, Migot S, Guelton N (2004) Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys. Mater Sci Eng A 387–389:158–162CrossRef Allain S, Chateau JP, Bouaziz O, Migot S, Guelton N (2004) Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys. Mater Sci Eng A 387–389:158–162CrossRef
3.
Zurück zum Zitat Saeed-Akbari A, Imlau J, Prahl U, Bleck W (2009) Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels. Metall Mater Trans A 40:3076–3090CrossRef Saeed-Akbari A, Imlau J, Prahl U, Bleck W (2009) Derivation and variation in composition-dependent stacking fault energy maps based on subregular solution model in high-manganese steels. Metall Mater Trans A 40:3076–3090CrossRef
4.
Zurück zum Zitat Holdren JP (2011) Materials genome initiative for global competitiveness. National Science and Technology Council OSTP, Washington, DC Holdren JP (2011) Materials genome initiative for global competitiveness. National Science and Technology Council OSTP, Washington, DC
5.
Zurück zum Zitat Rajan K (2015) Materials informatics: the materials “gene” and big data. Annu Rev Mater Res 45:153–169CrossRef Rajan K (2015) Materials informatics: the materials “gene” and big data. Annu Rev Mater Res 45:153–169CrossRef
6.
Zurück zum Zitat Kalidindi SR, Graef MD (2015) Materials data science: current status and future outlook. Annu Rev Mater Res 45:171–193CrossRef Kalidindi SR, Graef MD (2015) Materials data science: current status and future outlook. Annu Rev Mater Res 45:171–193CrossRef
7.
Zurück zum Zitat Vitos L, Nilsson JO, Johansson B (2006) Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory. Acta Mater 54:3821–3826CrossRef Vitos L, Nilsson JO, Johansson B (2006) Alloying effects on the stacking fault energy in austenitic stainless steels from first-principles theory. Acta Mater 54:3821–3826CrossRef
8.
Zurück zum Zitat Lu S, Hu QM, Johansson B, Vitos L (2011) Stacking fault energies of Mn, Co and Nb alloyed austenitic stainless steels. Acta Mater 59:5728–5734CrossRef Lu S, Hu QM, Johansson B, Vitos L (2011) Stacking fault energies of Mn, Co and Nb alloyed austenitic stainless steels. Acta Mater 59:5728–5734CrossRef
9.
Zurück zum Zitat Cheng C, Needs RJ, Heine V (1988) Inter-layer interactions and the origin of SiC polytypes. J Phys C Solid State Phys 21:1049–1063CrossRef Cheng C, Needs RJ, Heine V (1988) Inter-layer interactions and the origin of SiC polytypes. J Phys C Solid State Phys 21:1049–1063CrossRef
10.
Zurück zum Zitat Denteneer PJH, Haeringen WV (1987) Stacking-fault energies in semiconductors from first-principles calculations. J Phys C Solid State Phys 20:L883–L887CrossRef Denteneer PJH, Haeringen WV (1987) Stacking-fault energies in semiconductors from first-principles calculations. J Phys C Solid State Phys 20:L883–L887CrossRef
11.
Zurück zum Zitat Vitos L, Korzhavyi PA, Nilsson JO, Johansson B (2008) Stacking fault energy and magnetism in austenitic stainless steels. Phys Scr 77:065703CrossRef Vitos L, Korzhavyi PA, Nilsson JO, Johansson B (2008) Stacking fault energy and magnetism in austenitic stainless steels. Phys Scr 77:065703CrossRef
12.
Zurück zum Zitat Kibey S, Liu JB, Curtis MJ, Johnson DD, Sehitoglu H (2006) Effect of nitrogen on generalized stacking fault energy and stacking fault widths in high nitrogen steels. Acta Mater 54:2991–3001CrossRef Kibey S, Liu JB, Curtis MJ, Johnson DD, Sehitoglu H (2006) Effect of nitrogen on generalized stacking fault energy and stacking fault widths in high nitrogen steels. Acta Mater 54:2991–3001CrossRef
13.
Zurück zum Zitat Dick A, Hickel T, Neugebauer J (2009) The effect of disorder on the concentration-dependence of stacking fault energies in Fe1–xMnx a first principles study. Steel Res Int 80:603–608 Dick A, Hickel T, Neugebauer J (2009) The effect of disorder on the concentration-dependence of stacking fault energies in Fe1–xMnx a first principles study. Steel Res Int 80:603–608
14.
Zurück zum Zitat Abbasi A, Dick A, Hickel T, Neugebauer J (2011) First-principles investigation of the effect of carbon on the stacking fault energy of Fe–C alloys. Acta Mater 59:3041–3048CrossRef Abbasi A, Dick A, Hickel T, Neugebauer J (2011) First-principles investigation of the effect of carbon on the stacking fault energy of Fe–C alloys. Acta Mater 59:3041–3048CrossRef
15.
Zurück zum Zitat Liu J, Han P, Dong M, Fan G, Qiao G, Yang J (2012) Influence of Ni and N on generalized stacking-fault energies in Fe–Cr–Ni alloy: a first principle study. Phys B 407:891–895CrossRef Liu J, Han P, Dong M, Fan G, Qiao G, Yang J (2012) Influence of Ni and N on generalized stacking-fault energies in Fe–Cr–Ni alloy: a first principle study. Phys B 407:891–895CrossRef
16.
Zurück zum Zitat Medvedeva NI, Park MS, Van Aken DC, Medvedeva JE (2014) First-principles study of Mn, Al and C distribution and their effect on stacking fault energies in fcc Fe. J Alloys Compd 582:475–482CrossRef Medvedeva NI, Park MS, Van Aken DC, Medvedeva JE (2014) First-principles study of Mn, Al and C distribution and their effect on stacking fault energies in fcc Fe. J Alloys Compd 582:475–482CrossRef
17.
Zurück zum Zitat Limmer KR, Medvedeva JE, Aken DCV, Medvedeva NI (2015) Ab initio simulation of alloying effect on stacking fault energy in fcc Fe. Comput Mater Sci 99:253–255CrossRef Limmer KR, Medvedeva JE, Aken DCV, Medvedeva NI (2015) Ab initio simulation of alloying effect on stacking fault energy in fcc Fe. Comput Mater Sci 99:253–255CrossRef
18.
Zurück zum Zitat Olson GB, Cohen M (1976) A general mechanism of martensitic nucleation: part I. General concepts and the FCC/HCP transformation. Metall Trans A 7:1897–1904 Olson GB, Cohen M (1976) A general mechanism of martensitic nucleation: part I. General concepts and the FCC/HCP transformation. Metall Trans A 7:1897–1904
19.
Zurück zum Zitat Cotes SM, Guillermet AF, Sade M (2001) Fcc/Hcp martensitic transformation in the Fe–Mn system: part II. Driving force and thermodynamics of the nucleation process. Metall Mater Trans A 35:83–91CrossRef Cotes SM, Guillermet AF, Sade M (2001) Fcc/Hcp martensitic transformation in the Fe–Mn system: part II. Driving force and thermodynamics of the nucleation process. Metall Mater Trans A 35:83–91CrossRef
20.
Zurück zum Zitat MullneR P, Ferreira PJ (1996) On the energy of terminated stacking faults. Philos Mag Lett 73:289–298CrossRef MullneR P, Ferreira PJ (1996) On the energy of terminated stacking faults. Philos Mag Lett 73:289–298CrossRef
21.
Zurück zum Zitat Mosecker L, Saeed-Akbari A (2013) Nitrogen in chromiummanganese stainless steels: a review on the evaluation of stacking fault energy by computational thermodynamics. Sci Technol Adv Mater 14:033001CrossRef Mosecker L, Saeed-Akbari A (2013) Nitrogen in chromiummanganese stainless steels: a review on the evaluation of stacking fault energy by computational thermodynamics. Sci Technol Adv Mater 14:033001CrossRef
22.
Zurück zum Zitat Yang WS, Wan CM (1990) The influence of aluminium content to the stacking fault energy in Fe–Mn–Al–C alloy system. J Mater Sci 25:1821–1823. doi:10.1007/BF01045392 CrossRef Yang WS, Wan CM (1990) The influence of aluminium content to the stacking fault energy in Fe–Mn–Al–C alloy system. J Mater Sci 25:1821–1823. doi:10.​1007/​BF01045392 CrossRef
23.
Zurück zum Zitat Nakano J (2013) A thermo-mechanical correlation with driving forces for hcp martensite and twin formations in the Fe–Mn–C system exhibiting multicomposition sets. Sci Technol Adv Mater 14:014207CrossRef Nakano J (2013) A thermo-mechanical correlation with driving forces for hcp martensite and twin formations in the Fe–Mn–C system exhibiting multicomposition sets. Sci Technol Adv Mater 14:014207CrossRef
24.
Zurück zum Zitat Jun JH, Choi CS (1998) Variation of stacking fault energy with austenite grain size and its effect on the MS temperature of \(\gamma \)/\(\varepsilon \) martensitic transformation in Fe–Mn alloy. Mater Sci Eng A 257:353–356CrossRef Jun JH, Choi CS (1998) Variation of stacking fault energy with austenite grain size and its effect on the MS temperature of \(\gamma \)/\(\varepsilon \) martensitic transformation in Fe–Mn alloy. Mater Sci Eng A 257:353–356CrossRef
25.
Zurück zum Zitat Miodownik AP (1978) The calculation of stacking fault energies in Fe–Ni–Cr alloys. Calphad 2:207–226CrossRef Miodownik AP (1978) The calculation of stacking fault energies in Fe–Ni–Cr alloys. Calphad 2:207–226CrossRef
26.
Zurück zum Zitat Xiong R, Peng H, Si H, Zhang W, Wen Y (2014) Thermodynamic calculation of stacking fault energy of the Fe–Mn–Si–C high manganese steels. Mater Sci Eng A 598:376–386CrossRef Xiong R, Peng H, Si H, Zhang W, Wen Y (2014) Thermodynamic calculation of stacking fault energy of the Fe–Mn–Si–C high manganese steels. Mater Sci Eng A 598:376–386CrossRef
27.
Zurück zum Zitat Peng X, Zhu D, Hu Z, Yi W, Liu H, Wang M (2013) Stacking fault energy and tensile deformation behavior of high-carbon twinning-induced plasticity steels: effect of Cu addition. Mater Des 45:518–523CrossRef Peng X, Zhu D, Hu Z, Yi W, Liu H, Wang M (2013) Stacking fault energy and tensile deformation behavior of high-carbon twinning-induced plasticity steels: effect of Cu addition. Mater Des 45:518–523CrossRef
28.
Zurück zum Zitat Curtze S, Kuokkala VT (2010) Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater 58:5129–5141CrossRef Curtze S, Kuokkala VT (2010) Dependence of tensile deformation behavior of TWIP steels on stacking fault energy, temperature and strain rate. Acta Mater 58:5129–5141CrossRef
29.
Zurück zum Zitat Dumay A, Chateau JP, Allain S, Migot S, Bouaziz O (2008) Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel. Mater Sci Eng A 483–484:184–187CrossRef Dumay A, Chateau JP, Allain S, Migot S, Bouaziz O (2008) Influence of addition elements on the stacking-fault energy and mechanical properties of an austenitic Fe–Mn–C steel. Mater Sci Eng A 483–484:184–187CrossRef
30.
Zurück zum Zitat Schramm R, Reed R (1975) Stacking fault energies of seven commercial austenitic stainless steels. Metall Trans A 6:1345–1351CrossRef Schramm R, Reed R (1975) Stacking fault energies of seven commercial austenitic stainless steels. Metall Trans A 6:1345–1351CrossRef
31.
Zurück zum Zitat Rhodes CG, Thompson AW (1977) The composition dependence of stacking fault energy in austenitic stainless steels. Metall Trans A 8:1901–1906CrossRef Rhodes CG, Thompson AW (1977) The composition dependence of stacking fault energy in austenitic stainless steels. Metall Trans A 8:1901–1906CrossRef
32.
Zurück zum Zitat Brofman P, Ansell G (1978) On the effect of carbon on the stacking fault energy of austenitic stainless steels. Metall Mater Trans A 9:879–880CrossRef Brofman P, Ansell G (1978) On the effect of carbon on the stacking fault energy of austenitic stainless steels. Metall Mater Trans A 9:879–880CrossRef
34.
Zurück zum Zitat Li J, Zhao M, Jiang Q (2000) Alloy design of FeMnSiCrNi shape-memory alloys related to stacking-fault energy. Metall Mater Trans A 31:581–584CrossRef Li J, Zhao M, Jiang Q (2000) Alloy design of FeMnSiCrNi shape-memory alloys related to stacking-fault energy. Metall Mater Trans A 31:581–584CrossRef
35.
Zurück zum Zitat Tian X, Zhang Y (2009) Effect of si content on the stacking fault energy in \(\gamma \)-Fe–Mn–Si–C alloys: part i. X-ray diffraction line profile analysis. Mater Sci Eng A 516:73–77CrossRef Tian X, Zhang Y (2009) Effect of si content on the stacking fault energy in \(\gamma \)-Fe–Mn–Si–C alloys: part i. X-ray diffraction line profile analysis. Mater Sci Eng A 516:73–77CrossRef
36.
Zurück zum Zitat Ojima M, Adachi Y, Tomota Y, Katada Y, Kaneko Y, Kuroda K, Saka H (2009) Weak beam tem study on stacking fault energy of high nitrogen steels. Steel Res Int 80:477–481 Ojima M, Adachi Y, Tomota Y, Katada Y, Kaneko Y, Kuroda K, Saka H (2009) Weak beam tem study on stacking fault energy of high nitrogen steels. Steel Res Int 80:477–481
37.
Zurück zum Zitat Lee TH, Ha HY, Hwang B, Kim SJ, Shin E (2012) Effect of carbon fraction on stacking fault energy of austenitic stainless steels. Metall Mater Trans A 43:4455–4459CrossRef Lee TH, Ha HY, Hwang B, Kim SJ, Shin E (2012) Effect of carbon fraction on stacking fault energy of austenitic stainless steels. Metall Mater Trans A 43:4455–4459CrossRef
38.
Zurück zum Zitat Jeong J, Woo W, Oh K, Kwon S, Koo Y (2012) In situ neutron diffraction study of the microstructure and tensile deformation behavior in Al-added high manganese austenitic steels. Acta Mater 60:2290–2299CrossRef Jeong J, Woo W, Oh K, Kwon S, Koo Y (2012) In situ neutron diffraction study of the microstructure and tensile deformation behavior in Al-added high manganese austenitic steels. Acta Mater 60:2290–2299CrossRef
39.
Zurück zum Zitat Yonezawa T, Suzuki K, Ooki S, Hashimoto A (2013) The effect of chemical composition and heat treatment conditions on stacking fault energy for Fe–Cr–Ni austenitic stainless steel. Metall Mater Trans A 44:5884–5896CrossRef Yonezawa T, Suzuki K, Ooki S, Hashimoto A (2013) The effect of chemical composition and heat treatment conditions on stacking fault energy for Fe–Cr–Ni austenitic stainless steel. Metall Mater Trans A 44:5884–5896CrossRef
40.
Zurück zum Zitat Lehnhoff G, Findley K, De Cooman B (2014) The influence of silicon and aluminum alloying on the lattice parameter and stacking fault energy of austenitic steel. Scr Mater 92:19–22CrossRef Lehnhoff G, Findley K, De Cooman B (2014) The influence of silicon and aluminum alloying on the lattice parameter and stacking fault energy of austenitic steel. Scr Mater 92:19–22CrossRef
41.
Zurück zum Zitat Pierce DT, Jiménez JA, Bentley J, Raabe D, Oskay C, Wittig J (2014) The influence of manganese content on the stacking fault and austenite/\(\varepsilon \)-martensite interfacial energies in Fe–Mn-(Al–Si) steels investigated by experiment and theory. Acta Mater 68:238–253CrossRef Pierce DT, Jiménez JA, Bentley J, Raabe D, Oskay C, Wittig J (2014) The influence of manganese content on the stacking fault and austenite/\(\varepsilon \)-martensite interfacial energies in Fe–Mn-(Al–Si) steels investigated by experiment and theory. Acta Mater 68:238–253CrossRef
42.
Zurück zum Zitat Latanision RM, AWR Jr (1969) Extrinsic–intrinsic stacking-fault pairs in an Fe–Cr–Ni alloy. J Appl Phys 40:2716–2720CrossRef Latanision RM, AWR Jr (1969) Extrinsic–intrinsic stacking-fault pairs in an Fe–Cr–Ni alloy. J Appl Phys 40:2716–2720CrossRef
43.
Zurück zum Zitat Vingsbo O (1967) Stacking fault tetrahedra in fatigued stainless steel. Acta Metall 15:615–621CrossRef Vingsbo O (1967) Stacking fault tetrahedra in fatigued stainless steel. Acta Metall 15:615–621CrossRef
44.
Zurück zum Zitat Dulieu D, Nutting J (1964) Metallurgical developments in high-alloy steels. Iron Steel Inst 86:140–145 Dulieu D, Nutting J (1964) Metallurgical developments in high-alloy steels. Iron Steel Inst 86:140–145
45.
Zurück zum Zitat Whelan MJ (1959) Dislocation interactions in face-centred cubic metals, with particular reference to stainless steel. Proc R Soc Lond A Math Phys Eng Sci 249:114–137CrossRef Whelan MJ (1959) Dislocation interactions in face-centred cubic metals, with particular reference to stainless steel. Proc R Soc Lond A Math Phys Eng Sci 249:114–137CrossRef
46.
Zurück zum Zitat Brown LM (1964) The self-stress of dislocations and the shape of extended nodes. Philos Mag 10:441–466CrossRef Brown LM (1964) The self-stress of dislocations and the shape of extended nodes. Philos Mag 10:441–466CrossRef
47.
Zurück zum Zitat Brown LM, Thln AR (1964) Shape of three-fold extended nodes. Discuss Faraday Soc 38:35–41CrossRef Brown LM, Thln AR (1964) Shape of three-fold extended nodes. Discuss Faraday Soc 38:35–41CrossRef
48.
Zurück zum Zitat Siems R (1964) Shape of extended nodes. Discuss Faraday Soc 38:42–48CrossRef Siems R (1964) Shape of extended nodes. Discuss Faraday Soc 38:42–48CrossRef
49.
Zurück zum Zitat Jossang T, Stowell M, Hirth J, Lothe J (1965) On the determination of stacking fault energies from extended dislocation node measurements. Acta Metall 13:279–291CrossRef Jossang T, Stowell M, Hirth J, Lothe J (1965) On the determination of stacking fault energies from extended dislocation node measurements. Acta Metall 13:279–291CrossRef
50.
Zurück zum Zitat Ruff AW (1970) Measurement of stacking fault energy from dislocation interactions. Metall Mater Trans B 1:2391–2413 Ruff AW (1970) Measurement of stacking fault energy from dislocation interactions. Metall Mater Trans B 1:2391–2413
51.
Zurück zum Zitat Pierce DT, Bentley J, Jimnez JA, Wittig JE (2012) Stacking fault energy measurements of Fe–Mn–Al–Si austenitic twinning-induced plasticity steels. Scr Mater 66:753–756CrossRef Pierce DT, Bentley J, Jimnez JA, Wittig JE (2012) Stacking fault energy measurements of Fe–Mn–Al–Si austenitic twinning-induced plasticity steels. Scr Mater 66:753–756CrossRef
52.
Zurück zum Zitat Reed R, Schramm R (1974) Relationship between stacking-fault energy and X-ray measurements of stacking-fault probability and microstrain. J Appl Phys 45:4705–4711CrossRef Reed R, Schramm R (1974) Relationship between stacking-fault energy and X-ray measurements of stacking-fault probability and microstrain. J Appl Phys 45:4705–4711CrossRef
53.
Zurück zum Zitat Schramm RE, Reed RP (1976) Stacking fault energies of fcc Fe–Ni alloys by X-ray diffraction line profile analysis. Metall Mater Trans A 7:359–363CrossRef Schramm RE, Reed RP (1976) Stacking fault energies of fcc Fe–Ni alloys by X-ray diffraction line profile analysis. Metall Mater Trans A 7:359–363CrossRef
54.
Zurück zum Zitat Warren BE (1969) X-ray diffraction. Courier Corporation, North Chelmsford Warren BE (1969) X-ray diffraction. Courier Corporation, North Chelmsford
55.
Zurück zum Zitat Lee SJ, Jung YS, Baik SI, Kim YW, Kang M, Woo W, Lee YK (2014) The effect of nitrogen on the stacking fault energy in Fe–15Mn–2Cr–0.6C–xN twinning-induced plasticity steels. Scr Mater 92:23–26CrossRef Lee SJ, Jung YS, Baik SI, Kim YW, Kang M, Woo W, Lee YK (2014) The effect of nitrogen on the stacking fault energy in Fe–15Mn–2Cr–0.6C–xN twinning-induced plasticity steels. Scr Mater 92:23–26CrossRef
56.
Zurück zum Zitat Unfried-Silgado J, Wu L, Ferreira FF, Garzón CM, Ramirez AJ (2012) Stacking fault energy measurements in solid solution strengthened Ni–Cr–Fe alloys using synchrotron radiation. Mater Sci Eng A 558:70–75CrossRef Unfried-Silgado J, Wu L, Ferreira FF, Garzón CM, Ramirez AJ (2012) Stacking fault energy measurements in solid solution strengthened Ni–Cr–Fe alloys using synchrotron radiation. Mater Sci Eng A 558:70–75CrossRef
58.
Zurück zum Zitat Jin JE, Lee YK (2012) Effects of al on microstructure and tensile properties of C-bearing high mn twip steel. Acta Mater 60:1680–1688CrossRef Jin JE, Lee YK (2012) Effects of al on microstructure and tensile properties of C-bearing high mn twip steel. Acta Mater 60:1680–1688CrossRef
59.
Zurück zum Zitat Moallemi M, Zarei-Hanzaki A, Mirzaei A (2015) On the stacking fault energy evaluation and deformation mechanism of Sanicro-28 super-austenitic stainless steel. J Mater Eng Perform 24:2335–2340CrossRef Moallemi M, Zarei-Hanzaki A, Mirzaei A (2015) On the stacking fault energy evaluation and deformation mechanism of Sanicro-28 super-austenitic stainless steel. J Mater Eng Perform 24:2335–2340CrossRef
60.
Zurück zum Zitat Jeong K, Jin JE, Jung YS, Kang S, Lee YK (2013) The effects of Si on the mechanical twinning and strain hardening of Fe–18Mn–0.6C twinning-induced plasticity steel. Acta Mater 61:3399–3410CrossRef Jeong K, Jin JE, Jung YS, Kang S, Lee YK (2013) The effects of Si on the mechanical twinning and strain hardening of Fe–18Mn–0.6C twinning-induced plasticity steel. Acta Mater 61:3399–3410CrossRef
61.
Zurück zum Zitat Kang M, Woo W, Lee YK, Seong BS (2012) Neutron diffraction analysis of stacking fault energy in Fe–18Mn–2Al–0.6C twinning-induced plasticity steels. Mater Lett 76:93–95CrossRef Kang M, Woo W, Lee YK, Seong BS (2012) Neutron diffraction analysis of stacking fault energy in Fe–18Mn–2Al–0.6C twinning-induced plasticity steels. Mater Lett 76:93–95CrossRef
62.
Zurück zum Zitat Lee TH, Shin E, Oh CS, Ha HY, Kim SJ (2010) Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels. Acta Mater 58:3173–3186CrossRef Lee TH, Shin E, Oh CS, Ha HY, Kim SJ (2010) Correlation between stacking fault energy and deformation microstructure in high-interstitial-alloyed austenitic steels. Acta Mater 58:3173–3186CrossRef
63.
Zurück zum Zitat Talonen J, Hänninen H (2007) Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Mater 55:6108–6118CrossRef Talonen J, Hänninen H (2007) Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Mater 55:6108–6118CrossRef
64.
Zurück zum Zitat Barman H, Hamada A, Sahu T, Mahato B, Talonen J, Shee S, Sahu P, Porter D, Karjalainen L (2014) A stacking fault energy perspective into the uniaxial tensile deformation behavior and microstructure of a Cr–Mn austenitic steel. Metall Mater Trans A 45:1937–1952CrossRef Barman H, Hamada A, Sahu T, Mahato B, Talonen J, Shee S, Sahu P, Porter D, Karjalainen L (2014) A stacking fault energy perspective into the uniaxial tensile deformation behavior and microstructure of a Cr–Mn austenitic steel. Metall Mater Trans A 45:1937–1952CrossRef
65.
Zurück zum Zitat Mahato B, Shee S, Sahu T, Chowdhury SG, Sahu P, Porter D, Karjalainen L (2015) An effective stacking fault energy viewpoint on the formation of extended defects and their contribution to strain hardening in a Fe–Mn–Si–Al twinning-induced plasticity steel. Acta Mater 86:69–79CrossRef Mahato B, Shee S, Sahu T, Chowdhury SG, Sahu P, Porter D, Karjalainen L (2015) An effective stacking fault energy viewpoint on the formation of extended defects and their contribution to strain hardening in a Fe–Mn–Si–Al twinning-induced plasticity steel. Acta Mater 86:69–79CrossRef
66.
Zurück zum Zitat Warren B, Averbach B (1950) The effect of cold-work distortion on X-ray patterns. J Appl Phys 21:595–599CrossRef Warren B, Averbach B (1950) The effect of cold-work distortion on X-ray patterns. J Appl Phys 21:595–599CrossRef
67.
Zurück zum Zitat Zaddach A, Niu C, Koch CC, Irving DL (2013) Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM 65:1780–1789CrossRef Zaddach A, Niu C, Koch CC, Irving DL (2013) Mechanical properties and stacking fault energies of NiFeCrCoMn high-entropy alloy. JOM 65:1780–1789CrossRef
68.
Zurück zum Zitat Williamson G, Hall W (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31CrossRef Williamson G, Hall W (1953) X-ray line broadening from filed aluminium and wolfram. Acta Metall 1:22–31CrossRef
69.
Zurück zum Zitat El-Danaf E, Kalidindi SR, Doherty RD (1998) Influence of grain size and stacking-fault energy on deformation twinning in fcc metals. Metall Mater Trans A 30:1223–1233CrossRef El-Danaf E, Kalidindi SR, Doherty RD (1998) Influence of grain size and stacking-fault energy on deformation twinning in fcc metals. Metall Mater Trans A 30:1223–1233CrossRef
70.
Zurück zum Zitat Gavriljuk V, Petrov Y, Shanina B (2006) Effect of nitrogen on the electron structure and stacking fault energy in austenitic steels. Scr Mater 55:537–540CrossRef Gavriljuk V, Petrov Y, Shanina B (2006) Effect of nitrogen on the electron structure and stacking fault energy in austenitic steels. Scr Mater 55:537–540CrossRef
71.
Zurück zum Zitat Swann PR (1963) Dislocation substructure vs transgranular stress corrosion susceptibility of single phase alloys. Corrosion 19:102t–114tCrossRef Swann PR (1963) Dislocation substructure vs transgranular stress corrosion susceptibility of single phase alloys. Corrosion 19:102t–114tCrossRef
72.
Zurück zum Zitat Talonen J, Hnninen H (2007) Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Mater 55:6108–6118CrossRef Talonen J, Hnninen H (2007) Formation of shear bands and strain-induced martensite during plastic deformation of metastable austenitic stainless steels. Acta Mater 55:6108–6118CrossRef
73.
Zurück zum Zitat Bracke L, Mertens G, Penning J (2006) Influence of phase transformations on the mechanical properties of high-strength austenitic Fe–Mn–Cr steel. Metall Mater Trans Part A 37A:307–317CrossRef Bracke L, Mertens G, Penning J (2006) Influence of phase transformations on the mechanical properties of high-strength austenitic Fe–Mn–Cr steel. Metall Mater Trans Part A 37A:307–317CrossRef
74.
Zurück zum Zitat Douglass DL, Thomas G, Roser WR (1964) Ordering, stacking faults and stress corrosion cracking in austenitic alloys. Corrosion 20:15t–28tCrossRef Douglass DL, Thomas G, Roser WR (1964) Ordering, stacking faults and stress corrosion cracking in austenitic alloys. Corrosion 20:15t–28tCrossRef
75.
Zurück zum Zitat Li X, Almazouzi A (2009) Deformation and microstructure of neutron irradiated stainless steels with different stacking fault energy. J Nucl Mater 385:329–333CrossRef Li X, Almazouzi A (2009) Deformation and microstructure of neutron irradiated stainless steels with different stacking fault energy. J Nucl Mater 385:329–333CrossRef
76.
Zurück zum Zitat Murr LE (1969) Stacking-fault anomalies and the measurement of stacking-fault free energy in fcc thin films. Thin Solid Films 4:389–412CrossRef Murr LE (1969) Stacking-fault anomalies and the measurement of stacking-fault free energy in fcc thin films. Thin Solid Films 4:389–412CrossRef
77.
Zurück zum Zitat Idrissi H, Renard K, Ryelandt L, Schryvers D, Jacques PJ (2010) On the mechanism of twin formation in Fe–Mn–C TWIP steels. Acta Mater 58:2464–2476CrossRef Idrissi H, Renard K, Ryelandt L, Schryvers D, Jacques PJ (2010) On the mechanism of twin formation in Fe–Mn–C TWIP steels. Acta Mater 58:2464–2476CrossRef
78.
Zurück zum Zitat Kim J, Lee SJ, De Cooman BC (2011) Effect of Al on the stacking fault energy of Fe–18Mn–0.6C twinning-induced plasticity. Scr Mater 65:363–366CrossRef Kim J, Lee SJ, De Cooman BC (2011) Effect of Al on the stacking fault energy of Fe–18Mn–0.6C twinning-induced plasticity. Scr Mater 65:363–366CrossRef
79.
Zurück zum Zitat Gallagher PCJ (1970) The influence of alloying, temperature, and related effects on the stacking fault energy. Metall Tran 1:2429–2461 Gallagher PCJ (1970) The influence of alloying, temperature, and related effects on the stacking fault energy. Metall Tran 1:2429–2461
80.
Zurück zum Zitat Kim J, Cooman BCD (2011) On the stacking fault energy of Fe–18 Pct Mn–0.6 Pct C–1.5 Pct Al twinning-induced plasticity steel. Metall Mater Trans A 42:932–936CrossRef Kim J, Cooman BCD (2011) On the stacking fault energy of Fe–18 Pct Mn–0.6 Pct C–1.5 Pct Al twinning-induced plasticity steel. Metall Mater Trans A 42:932–936CrossRef
81.
Zurück zum Zitat Lecroisey F, Thomas B (1970) On the variation of the intrinsic stacking fault energy with temperature in Fe–18 Cr–12 Ni alloys. Phys Status Solidi (a) 2:K217–K220CrossRef Lecroisey F, Thomas B (1970) On the variation of the intrinsic stacking fault energy with temperature in Fe–18 Cr–12 Ni alloys. Phys Status Solidi (a) 2:K217–K220CrossRef
82.
Zurück zum Zitat Latanision RM, Ruff AW (1971) The temperature dependence of stacking fault energy in Fe–Cr–Ni alloys. Metall Trans 2:505–509CrossRef Latanision RM, Ruff AW (1971) The temperature dependence of stacking fault energy in Fe–Cr–Ni alloys. Metall Trans 2:505–509CrossRef
83.
Zurück zum Zitat Breedis JF, Kaufman L (1971) The formation of Hcp and Bcc phases in austenitic iron alloys. Metall Mater Trans B 2:2359–2371CrossRef Breedis JF, Kaufman L (1971) The formation of Hcp and Bcc phases in austenitic iron alloys. Metall Mater Trans B 2:2359–2371CrossRef
84.
Zurück zum Zitat Behjati P, Najafizadeh A (2011) Role of chemical driving force in martensitic transformations of high-purity Fe–Cr–Ni alloys. Metall Mater Trans A 42:3752–3760CrossRef Behjati P, Najafizadeh A (2011) Role of chemical driving force in martensitic transformations of high-purity Fe–Cr–Ni alloys. Metall Mater Trans A 42:3752–3760CrossRef
85.
Zurück zum Zitat Lecroisey F, Pineau A (1972) Martensitic transformations induced by plastic deformation in the Fe–Ni–Cr–C system. Metall Mater Trans B 3:391–400CrossRef Lecroisey F, Pineau A (1972) Martensitic transformations induced by plastic deformation in the Fe–Ni–Cr–C system. Metall Mater Trans B 3:391–400CrossRef
86.
Zurück zum Zitat Abrassart F (1973) Stress-induced \(\gamma \)/\(\alpha \), a martensitic transformation in two carbon stainless steels. Application to trip steels. Metall Mater Trans B 4:2205–2216CrossRef Abrassart F (1973) Stress-induced \(\gamma \)/\(\alpha \), a martensitic transformation in two carbon stainless steels. Application to trip steels. Metall Mater Trans B 4:2205–2216CrossRef
87.
Zurück zum Zitat Unfried-Silgado J, Wu L, Furlan Ferreira F, Mario Garzn C, Ramrez AJ (2012) Stacking fault energy measurements in solid solution strengthened Ni–Cr–Fe alloys using synchrotron radiation. Mater Sci Eng A 558:70–75CrossRef Unfried-Silgado J, Wu L, Furlan Ferreira F, Mario Garzn C, Ramrez AJ (2012) Stacking fault energy measurements in solid solution strengthened Ni–Cr–Fe alloys using synchrotron radiation. Mater Sci Eng A 558:70–75CrossRef
88.
Zurück zum Zitat Strife JR, Carr MJ, Ansell GS (1977) The effect of austenite prestrain above the Md temperature on the martensitic transformation in Fe–Ni–Cr–C alloys. Metall Mater Trans A 8:1471–1484CrossRef Strife JR, Carr MJ, Ansell GS (1977) The effect of austenite prestrain above the Md temperature on the martensitic transformation in Fe–Ni–Cr–C alloys. Metall Mater Trans A 8:1471–1484CrossRef
89.
Zurück zum Zitat Remy L (1977) Temperature variation of the intrinsic stacking fault energy of a high manganese austenitic steel. Acta Metall 25:173–179CrossRef Remy L (1977) Temperature variation of the intrinsic stacking fault energy of a high manganese austenitic steel. Acta Metall 25:173–179CrossRef
90.
Zurück zum Zitat Brofman PJ, Ansell GS (1978) On the effect of carbon on the stacking fault energy of austenitic stainless steels. Metall Mater Trans A 9:879–880CrossRef Brofman PJ, Ansell GS (1978) On the effect of carbon on the stacking fault energy of austenitic stainless steels. Metall Mater Trans A 9:879–880CrossRef
91.
Zurück zum Zitat Pierce DT, Jimnez JA, Bentley J, Raabe D, Oskay C, Wittig JE (2014) The influence of manganese content on the stacking fault and austenite/\(\varepsilon \)-martensite interfacial energies in Fe-Mn(Al-Si) steels investigated by experiment and theory. Acta Mater 68:238–253CrossRef Pierce DT, Jimnez JA, Bentley J, Raabe D, Oskay C, Wittig JE (2014) The influence of manganese content on the stacking fault and austenite/\(\varepsilon \)-martensite interfacial energies in Fe-Mn(Al-Si) steels investigated by experiment and theory. Acta Mater 68:238–253CrossRef
92.
Zurück zum Zitat Bampton CC, Jones IP, Loretto MH (1978) Stacking fault energy measurements in some austenitic stainless steels. Acta Metall 26:39–51CrossRef Bampton CC, Jones IP, Loretto MH (1978) Stacking fault energy measurements in some austenitic stainless steels. Acta Metall 26:39–51CrossRef
93.
Zurück zum Zitat Lehnhoff GR, Findley KO, De Cooman BC (2014) The influence of silicon and aluminum alloying on the lattice parameter and stacking fault energy of austenitic steel. Scr Mater 92:19–22CrossRef Lehnhoff GR, Findley KO, De Cooman BC (2014) The influence of silicon and aluminum alloying on the lattice parameter and stacking fault energy of austenitic steel. Scr Mater 92:19–22CrossRef
94.
Zurück zum Zitat Stoltz RE, Sande JBV (1980) The effect of nitrogen on stacking fault energy of Fe–Ni–Cr–Mn steels. Metall Trans A 11:1033–1037CrossRef Stoltz RE, Sande JBV (1980) The effect of nitrogen on stacking fault energy of Fe–Ni–Cr–Mn steels. Metall Trans A 11:1033–1037CrossRef
95.
Zurück zum Zitat Rafaja D, Krbetschek C, Ullrich C, Martin S (2014) Stacking fault energy in austenitic steels determined by using in situ X-ray diffraction during bending. J Appl Crystallogr 47:936–947CrossRef Rafaja D, Krbetschek C, Ullrich C, Martin S (2014) Stacking fault energy in austenitic steels determined by using in situ X-ray diffraction during bending. J Appl Crystallogr 47:936–947CrossRef
97.
Zurück zum Zitat Oh BW, Cho SJ, Kim YG, Kim YP, Kim WS, Hong SH (1995) Effect of aluminium on deformation mode and mechanical properties of austenitic Fe–Mn–Cr–Al–C alloys. Mater Sci Eng A 197:147–156CrossRef Oh BW, Cho SJ, Kim YG, Kim YP, Kim WS, Hong SH (1995) Effect of aluminium on deformation mode and mechanical properties of austenitic Fe–Mn–Cr–Al–C alloys. Mater Sci Eng A 197:147–156CrossRef
98.
Zurück zum Zitat Pontini AE, Hermida JD (1997) X-ray diffraction measurement of the stacking fault energy reduction induced by hydrogen in an AISI 304 steel. Scr Mater 37:1831–1837CrossRef Pontini AE, Hermida JD (1997) X-ray diffraction measurement of the stacking fault energy reduction induced by hydrogen in an AISI 304 steel. Scr Mater 37:1831–1837CrossRef
99.
Zurück zum Zitat Hickel T, SandlÖbes S, Marceau RKW, Dick A, Bleskov I, Neugebauer J, Raabe D (2014) Impact of nanodiffusion on the stacking fault energy in high-strength steels. Acta Mater 75:147–155CrossRef Hickel T, SandlÖbes S, Marceau RKW, Dick A, Bleskov I, Neugebauer J, Raabe D (2014) Impact of nanodiffusion on the stacking fault energy in high-strength steels. Acta Mater 75:147–155CrossRef
100.
Zurück zum Zitat Gavriljuk VG, Sozinov AL, Foct J, Petrov JN, Polushkin YA (1998) Effect of nitrogen on the temperature dependence of the yield strength of austenitic steels. Acta Mater 46:1157–1163CrossRef Gavriljuk VG, Sozinov AL, Foct J, Petrov JN, Polushkin YA (1998) Effect of nitrogen on the temperature dependence of the yield strength of austenitic steels. Acta Mater 46:1157–1163CrossRef
101.
Zurück zum Zitat Barman H, Hamada AS, Sahu T, Mahato B, Talonen J, Shee SK, Sahu P, Porter DA, Karjalainen LP (2014) A stacking fault energy perspective into the uniaxial tensile deformation behavior and microstructure of a Cr–Mn austenitic steel. Metall Mater Trans A 45:1937–1952CrossRef Barman H, Hamada AS, Sahu T, Mahato B, Talonen J, Shee SK, Sahu P, Porter DA, Karjalainen LP (2014) A stacking fault energy perspective into the uniaxial tensile deformation behavior and microstructure of a Cr–Mn austenitic steel. Metall Mater Trans A 45:1937–1952CrossRef
102.
Zurück zum Zitat Li JC, Zheng W, Jiang Q (1999) Stacking fault energy of iron-base shape memory alloys. Mater Lett 38:275–277CrossRef Li JC, Zheng W, Jiang Q (1999) Stacking fault energy of iron-base shape memory alloys. Mater Lett 38:275–277CrossRef
103.
Zurück zum Zitat Gavriljuk VG, Berns H, Escher C, Glavatskaya NI, Sozinov A, Petrov YN (1999) Grain boundary strengthening in austenitic nitrogen steels. Mater Sci Eng A 271:14–21CrossRef Gavriljuk VG, Berns H, Escher C, Glavatskaya NI, Sozinov A, Petrov YN (1999) Grain boundary strengthening in austenitic nitrogen steels. Mater Sci Eng A 271:14–21CrossRef
104.
Zurück zum Zitat Kumar D (2015) Design of high manganese steels: calculation of Sfe and Ms temperature. In: HSLA steels 2015, microalloying 2015 & Offshore Engineering Steels 2015, pp 857–863 Kumar D (2015) Design of high manganese steels: calculation of Sfe and Ms temperature. In: HSLA steels 2015, microalloying 2015 & Offshore Engineering Steels 2015, pp 857–863
105.
Zurück zum Zitat Kireeva IV, Chumlyakov YI, Luzginova NV (2002) Orientation dependence of resolved shear stresses in single crystals of the nitrogen-containing austenitic stainless steel Fe–26% Cr–32% Ni–3% Mo. Phys Met Metall 93:374–383 Kireeva IV, Chumlyakov YI, Luzginova NV (2002) Orientation dependence of resolved shear stresses in single crystals of the nitrogen-containing austenitic stainless steel Fe–26% Cr–32% Ni–3% Mo. Phys Met Metall 93:374–383
106.
Zurück zum Zitat Mahato B, Shee SK, Sahu T, Ghosh Chowdhury S, Sahu P, Porter DA, Karjalainen LP (2015) An effective stacking fault energy viewpoint on the formation of extended defects and their contribution to strain hardening in a Fe–Mn–Si–Al twinning-induced plasticity steel. Acta Mater 86:69–79CrossRef Mahato B, Shee SK, Sahu T, Ghosh Chowdhury S, Sahu P, Porter DA, Karjalainen LP (2015) An effective stacking fault energy viewpoint on the formation of extended defects and their contribution to strain hardening in a Fe–Mn–Si–Al twinning-induced plasticity steel. Acta Mater 86:69–79CrossRef
107.
Zurück zum Zitat Petrov YN (2003) Effect of carbon and nitrogen on the stacking fault energy of high-alloyed iron-based austenite. Zeitschrift fr Metallkunde 94:1012–1016CrossRef Petrov YN (2003) Effect of carbon and nitrogen on the stacking fault energy of high-alloyed iron-based austenite. Zeitschrift fr Metallkunde 94:1012–1016CrossRef
108.
Zurück zum Zitat Kim Y, Kim YM, Koh JY, Lee TH, Woo WC, Han HN (2016) Evaluation of single crystal elastic constants and stacking fault energy in high-nitrogen duplex stainless steel by in-situ neutron diffraction. Scr Mater 119:1–4CrossRef Kim Y, Kim YM, Koh JY, Lee TH, Woo WC, Han HN (2016) Evaluation of single crystal elastic constants and stacking fault energy in high-nitrogen duplex stainless steel by in-situ neutron diffraction. Scr Mater 119:1–4CrossRef
109.
Zurück zum Zitat Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830 Pedregosa F, Varoquaux G, Gramfort A, Michel V, Thirion B, Grisel O, Blondel M, Prettenhofer P, Weiss R, Dubourg V, Vanderplas J, Passos A, Cournapeau D, Brucher M, Perrot M, Duchesnay E (2011) Scikit-learn: machine learning in Python. J Mach Learn Res 12:2825–2830
110.
Zurück zum Zitat Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd international conference on machine learning, pp 161–168 Caruana R, Niculescu-Mizil A (2006) An empirical comparison of supervised learning algorithms. In: Proceedings of the 23rd international conference on machine learning, pp 161–168
111.
Zurück zum Zitat Lim TS, Loh WY, Shih YS (2000) A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Mach Learn 40:203–228CrossRef Lim TS, Loh WY, Shih YS (2000) A comparison of prediction accuracy, complexity, and training time of thirty-three old and new classification algorithms. Mach Learn 40:203–228CrossRef
112.
Zurück zum Zitat Braga-Neto UM, Dougherty ER (2004) Is cross-validation valid for small-sample microarray classification? Bioinformatics 20:374–380CrossRef Braga-Neto UM, Dougherty ER (2004) Is cross-validation valid for small-sample microarray classification? Bioinformatics 20:374–380CrossRef
113.
Zurück zum Zitat Esfahani MS, Dougherty ER (2013) Effect of separate sampling on classification accuracy. Bioinformatics 30:242–250CrossRef Esfahani MS, Dougherty ER (2013) Effect of separate sampling on classification accuracy. Bioinformatics 30:242–250CrossRef
114.
Zurück zum Zitat Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. Inf Process Manag 45:427–437CrossRef Sokolova M, Lapalme G (2009) A systematic analysis of performance measures for classification tasks. Inf Process Manag 45:427–437CrossRef
115.
Zurück zum Zitat Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326CrossRef Roweis ST, Saul LK (2000) Nonlinear dimensionality reduction by locally linear embedding. Science 290:2323–2326CrossRef
116.
Zurück zum Zitat Sato K, Ichinose M, Hirotsu Y, Inoue Y (1989) Effects of deformation induced phase transformation and twinning on the mechanical properties of austenitic Fe–Mn–Al alloys. Trans Iron Steel Inst Jpn 29:868–877CrossRef Sato K, Ichinose M, Hirotsu Y, Inoue Y (1989) Effects of deformation induced phase transformation and twinning on the mechanical properties of austenitic Fe–Mn–Al alloys. Trans Iron Steel Inst Jpn 29:868–877CrossRef
118.
Zurück zum Zitat Silcock JM, Rookes RW, Barford J (1966) Twin frequency and stacking fault energy in austenitic steels. Iron Steel Inst J 204:623–627 Silcock JM, Rookes RW, Barford J (1966) Twin frequency and stacking fault energy in austenitic steels. Iron Steel Inst J 204:623–627
119.
Zurück zum Zitat Clement A, Clement R, Coulomb P (1967) Paires de défauts intrinséque et extrinséque dans un acier inoxidable et dans un allieage cuivre-silicium. Physica status solidi (b) 21:K97–K98CrossRef Clement A, Clement R, Coulomb P (1967) Paires de défauts intrinséque et extrinséque dans un acier inoxidable et dans un allieage cuivre-silicium. Physica status solidi (b) 21:K97–K98CrossRef
120.
Zurück zum Zitat Fawley R, Quader MA, Dodd RA (1968) Compositional effects on the deformation modes, annealing twin frequencies, and stacking fault energies of austenitic stainless steels. Trans Met Soc AIME 242:771–776 Fawley R, Quader MA, Dodd RA (1968) Compositional effects on the deformation modes, annealing twin frequencies, and stacking fault energies of austenitic stainless steels. Trans Met Soc AIME 242:771–776
121.
Zurück zum Zitat Butakova EhD, Malyshev KA, Noskova NI (1973) Energy of packing defect in iron-nickel and iron-nickel-chromium alloys. Fizika Metallov i Metallovedenie 35:662–664 Butakova EhD, Malyshev KA, Noskova NI (1973) Energy of packing defect in iron-nickel and iron-nickel-chromium alloys. Fizika Metallov i Metallovedenie 35:662–664
122.
Zurück zum Zitat Volosevich PYu, Gridnev VN, Petrov YuN (1976) Manganese influence on stacking-fault energy in iron-manganese alloys. Fizika Metallov i Metallovedenie 42:372–376 Volosevich PYu, Gridnev VN, Petrov YuN (1976) Manganese influence on stacking-fault energy in iron-manganese alloys. Fizika Metallov i Metallovedenie 42:372–376
123.
Zurück zum Zitat Reick W, Pohl M, Padilha AF (1996) Determination of stacking fault energy of austenite in a duplex stainless steel. Steel Res Int 67:253–256CrossRef Reick W, Pohl M, Padilha AF (1996) Determination of stacking fault energy of austenite in a duplex stainless steel. Steel Res Int 67:253–256CrossRef
124.
Zurück zum Zitat Mujica L, Weber S, Theisen W (2012) The stacking fault energy and its dependence on the interstitial content in various austenitic steels. Mater Sci Forum 706:2193–2198CrossRef Mujica L, Weber S, Theisen W (2012) The stacking fault energy and its dependence on the interstitial content in various austenitic steels. Mater Sci Forum 706:2193–2198CrossRef
125.
Zurück zum Zitat Yonezawa T, Suzuki K, Ooki S, Hashimoto A (2013) The effect of chemical composition and heat treatment conditions on stacking fault energy for Fe-Cr-Ni austenitic stainless steel. Metall Mater Trans A 44:5884–5896CrossRef Yonezawa T, Suzuki K, Ooki S, Hashimoto A (2013) The effect of chemical composition and heat treatment conditions on stacking fault energy for Fe-Cr-Ni austenitic stainless steel. Metall Mater Trans A 44:5884–5896CrossRef
Metadaten
Titel
A data-driven machine learning approach to predicting stacking faulting energy in austenitic steels
verfasst von
N. Chaudhary
A. Abu-Odeh
I. Karaman
R. Arróyave
Publikationsdatum
13.06.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 18/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1252-x

Weitere Artikel der Ausgabe 18/2017

Journal of Materials Science 18/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.