Skip to main content
Erschienen in: Neural Computing and Applications 4/2024

17.11.2023 | Original Article

A deep learning approach for early detection of drought stress in maize using proximal scale digital images

verfasst von: Pooja Goyal, Rakesh Sharda, Mukesh Saini, Mukesh Siag

Erschienen in: Neural Computing and Applications | Ausgabe 4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Neural computing methods pose an edge over conventional methods for drought stress identification because of their ease of implementation, accuracy, non-invasive approach, cost-effectiveness, and ability to predict in real time. To ensure proper irrigation scheduling and prevent major yield losses, the objective was to develop a deep learning (DL)-based custom convolutional neural network (CNN) framework for in situ identification and classification of drought stress in maize crops. An original image dataset was created by acquiring 2703 RGB images of maize crops under natural daylight conditions to incorporate noise and varied backgrounds. The dataset was augmented and divided in a ratio of 7:2:1 for the training, validation, and test sets. A custom-CNN model was built using feature blocks, fully connected layers, and dense layers, and compared with five state-of-the-art CNN architectures, i.e. InceptionV3, Xception, ResNet50, DenseNet121 and EfficientNetB1. The results revealed that the custom CNN model achieved accuracies of 98.71% and 98.53% on the training and test sets, respectively. In comparison, the ResNet50 and EfficientNetB1 transfer-learned CNN architectures achieved an equivalent accuracy of 99.26% each, followed by DenseNet121 with a 98.90% accuracy on the test set. The Xception model performed the worst, with the highest accuracy of 91.91% on the test set. The results demonstrate that the developed custom CNN model should be adopted for real-time implementation on resource-constrained edge devices because of the lower number of parameters (0.65 million parameters) compared to other state-of-the-art architectures.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Literatur
3.
Zurück zum Zitat Mukherjee S, Mishra A, Trenberth KE (2018) Climate change and drought: a perspective on drought indices. Current Climate Change Reports 4(2):145–163CrossRef Mukherjee S, Mishra A, Trenberth KE (2018) Climate change and drought: a perspective on drought indices. Current Climate Change Reports 4(2):145–163CrossRef
4.
Zurück zum Zitat Tebaldi C, Lobell DJ (2018) Differences, or lack thereof, in wheat and maize yields under three low-warming scenarios. Environ Res Lett 13:065001CrossRef Tebaldi C, Lobell DJ (2018) Differences, or lack thereof, in wheat and maize yields under three low-warming scenarios. Environ Res Lett 13:065001CrossRef
8.
Zurück zum Zitat Ahmad B, Raina A, Khan S (2019) Impact of biotic and abiotic stresses on plants, and their responses. In: Wani S (ed) Disease resistance in crop plants. Springer, Cham, pp 1–20 Ahmad B, Raina A, Khan S (2019) Impact of biotic and abiotic stresses on plants, and their responses. In: Wani S (ed) Disease resistance in crop plants. Springer, Cham, pp 1–20
10.
Zurück zum Zitat Salika R, Riffat J (2021) Abiotic stress responses in maize: a review. Acta Physiol Plantarum 43(9):130CrossRef Salika R, Riffat J (2021) Abiotic stress responses in maize: a review. Acta Physiol Plantarum 43(9):130CrossRef
11.
Zurück zum Zitat Zaidi P, Yadav M, Maniselvan P, Khan R, Shadakshari T, Singh R, Pal D (2010) Morpho-physiological traits associated with cold stress tolerance in tropical maize (Zea mays L.). Maydica 55:201–208 Zaidi P, Yadav M, Maniselvan P, Khan R, Shadakshari T, Singh R, Pal D (2010) Morpho-physiological traits associated with cold stress tolerance in tropical maize (Zea mays L.). Maydica 55:201–208
13.
Zurück zum Zitat Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A., Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan M Z (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci p.1147. Fahad S, Bajwa AA, Nazir U, Anjum SA, Farooq A., Zohaib A, Sadia S, Nasim W, Adkins S, Saud S, Ihsan M Z (2017) Crop production under drought and heat stress: plant responses and management options. Front Plant Sci p.1147.
16.
Zurück zum Zitat Singh AK, Ganapathysubramanian B, Singh AK, Sarkar S (2016) Machine learning for high throughput stress phenotyping in plants. Trends Plant Sci 21(2):110–124CrossRef Singh AK, Ganapathysubramanian B, Singh AK, Sarkar S (2016) Machine learning for high throughput stress phenotyping in plants. Trends Plant Sci 21(2):110–124CrossRef
17.
Zurück zum Zitat Naik HS, Zhang J, Lofquist A, Assefa T, Sarkar S, Ackerman D, Singh A, Singh AK, Ganapathysubramanian B (2017) A real-time phenotyping framework using machine learning for plant stress severity rating in soybean. Plant Methods 13(1):1–2CrossRef Naik HS, Zhang J, Lofquist A, Assefa T, Sarkar S, Ackerman D, Singh A, Singh AK, Ganapathysubramanian B (2017) A real-time phenotyping framework using machine learning for plant stress severity rating in soybean. Plant Methods 13(1):1–2CrossRef
18.
Zurück zum Zitat Pantazi XE, Moshou D, Oberti R, West J, Mouazen AM, Bochtis D (2017) Detection of biotic and abiotic stresses in crops by using hierarchical self-organizing classifiers. Precis Agric 18(3):383–393CrossRef Pantazi XE, Moshou D, Oberti R, West J, Mouazen AM, Bochtis D (2017) Detection of biotic and abiotic stresses in crops by using hierarchical self-organizing classifiers. Precis Agric 18(3):383–393CrossRef
19.
Zurück zum Zitat Zhuang S, Wang P, Jiang B, Li M, Gong Z (2017) Early detection of water stress in maize based on digital images. Comp Elect Agri 140:461–468CrossRef Zhuang S, Wang P, Jiang B, Li M, Gong Z (2017) Early detection of water stress in maize based on digital images. Comp Elect Agri 140:461–468CrossRef
20.
Zurück zum Zitat Anami BS, Malvade NN, Palaiah S (2020) Classification of yield affecting biotic and abiotic paddy crop stresses using field images. Info Process Agri 7(2):272–285 Anami BS, Malvade NN, Palaiah S (2020) Classification of yield affecting biotic and abiotic paddy crop stresses using field images. Info Process Agri 7(2):272–285
21.
Zurück zum Zitat Mohanty SP, Hughes DP, Salathe M (2016) Using deep learning for image-based plant disease detection. Front Plant Sci 7:1419CrossRef Mohanty SP, Hughes DP, Salathe M (2016) Using deep learning for image-based plant disease detection. Front Plant Sci 7:1419CrossRef
22.
Zurück zum Zitat DeChant C, Wiesner-Hanks T, Chen S, Stewart EL, Yosinski J, Gore MA, Lipson H (2017) Automated identification of northern leaf blight-infected maize plants from field imagery using deep learning. Phytopathol 107(11):1426–1432CrossRef DeChant C, Wiesner-Hanks T, Chen S, Stewart EL, Yosinski J, Gore MA, Lipson H (2017) Automated identification of northern leaf blight-infected maize plants from field imagery using deep learning. Phytopathol 107(11):1426–1432CrossRef
23.
Zurück zum Zitat Ghosal S, Blystone D, Singh AK, Ganapathysubramanian B, Singh A, Sarkar S (2018) An explainable deep machine vision framework for plant stress phenotyping. Proc Natl Acad Sci 115(18):4613–4618CrossRef Ghosal S, Blystone D, Singh AK, Ganapathysubramanian B, Singh A, Sarkar S (2018) An explainable deep machine vision framework for plant stress phenotyping. Proc Natl Acad Sci 115(18):4613–4618CrossRef
24.
Zurück zum Zitat Too EC, Yujian L, Njuki S, Yingchun L (2019) A comparative study of fine-tuning deep learning models for plant disease identification. Comp Elect Agri 161:272–279CrossRef Too EC, Yujian L, Njuki S, Yingchun L (2019) A comparative study of fine-tuning deep learning models for plant disease identification. Comp Elect Agri 161:272–279CrossRef
25.
Zurück zum Zitat An JY, Li WY, Li MS, Cui SR, Yue HR (2019) Identification and classification of maize drought stress using deep convolutional neural network. Symmetry 11(2):256CrossRef An JY, Li WY, Li MS, Cui SR, Yue HR (2019) Identification and classification of maize drought stress using deep convolutional neural network. Symmetry 11(2):256CrossRef
26.
Zurück zum Zitat Picon A, Seitz M, Alvarez-Gila A, Mohnke P, Ortiz-Barredo A, Echazarra J (2019) Crop conditional convolutional neural networks for massive multi-crop plant disease classification over cell phone acquired images taken on real field conditions. Comp Elect Agri 167:105093CrossRef Picon A, Seitz M, Alvarez-Gila A, Mohnke P, Ortiz-Barredo A, Echazarra J (2019) Crop conditional convolutional neural networks for massive multi-crop plant disease classification over cell phone acquired images taken on real field conditions. Comp Elect Agri 167:105093CrossRef
27.
Zurück zum Zitat Anami BS, Malvade NN, Palaiah S (2020) Deep learning approach for recognition and classification of yield affecting paddy crop stresses using field images. Artif Intl Agri 4:12–20 Anami BS, Malvade NN, Palaiah S (2020) Deep learning approach for recognition and classification of yield affecting paddy crop stresses using field images. Artif Intl Agri 4:12–20
28.
Zurück zum Zitat Azimi S, Wadhawan R, Gandhi TK (2021) Intelligent monitoring of stress induced by water deficiency in plants using deep learning. IEEE Trans Instrum Meas 70:1–13CrossRef Azimi S, Wadhawan R, Gandhi TK (2021) Intelligent monitoring of stress induced by water deficiency in plants using deep learning. IEEE Trans Instrum Meas 70:1–13CrossRef
29.
Zurück zum Zitat Zhang X, Yue Q, Fanfeng M, Chengguo F, Mingming Z (2018) Identification of maize leaf diseases using improved deep convolutional neural networks. IEEE Access 6:30370–30377CrossRef Zhang X, Yue Q, Fanfeng M, Chengguo F, Mingming Z (2018) Identification of maize leaf diseases using improved deep convolutional neural networks. IEEE Access 6:30370–30377CrossRef
30.
Zurück zum Zitat Chandel NS, Chakraborty SK, Rajwade YA, Dubey K, Tiwari MK, Jat D (2020) Identifying crop water stress using deep learning models. Neural Comput Appl 17:1–15 Chandel NS, Chakraborty SK, Rajwade YA, Dubey K, Tiwari MK, Jat D (2020) Identifying crop water stress using deep learning models. Neural Comput Appl 17:1–15
31.
Zurück zum Zitat Deng J, Dong W, Socher R, Li L J, Li K, Fei-Fei L (2009) ImageNet: A large-scale hierarchical image database. In: Proceedings of the IEEE conference on computer vision and pattern recognition. Miami, FL, USA, pp 248–255 Deng J, Dong W, Socher R, Li L J, Li K, Fei-Fei L (2009) ImageNet: A large-scale hierarchical image database. In: Proceedings of the IEEE conference on computer vision and pattern recognition. Miami, FL, USA, pp 248–255
32.
Zurück zum Zitat Zhuang S, Wang P, Jiang B, Li M (2020) Learned features of leaf phenotype to monitor maize water status in the fields. Comp Elect Agri 172:105347CrossRef Zhuang S, Wang P, Jiang B, Li M (2020) Learned features of leaf phenotype to monitor maize water status in the fields. Comp Elect Agri 172:105347CrossRef
33.
Zurück zum Zitat Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826 Szegedy C, Vanhoucke V, Ioffe S, Shlens J, Wojna Z (2016) Rethinking the inception architecture for computer vision. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 2818–2826
34.
Zurück zum Zitat Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9 Szegedy C, Liu W, Jia Y, Sermanet P, Reed S, Anguelov D, Rabinovich A (2015) Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 1–9
35.
Zurück zum Zitat Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 1251–1258 Chollet F (2017) Xception: deep learning with depthwise separable convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition, 1251–1258
36.
Zurück zum Zitat He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778 He K, Zhang X, Ren S, Sun J (2016) Deep residual learning for image recognition. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 770–778
37.
Zurück zum Zitat Huang G, Liu Z, Van Der Maaten L, Weinberger K Q (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708 Huang G, Liu Z, Van Der Maaten L, Weinberger K Q (2017) Densely connected convolutional networks. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4700–4708
38.
Zurück zum Zitat Tan M, Le Q (2019) Efficientnet: rethinking model scaling for convolutional neural networks. In: International conference on machine learning, pp 6105–6114. PMLR Tan M, Le Q (2019) Efficientnet: rethinking model scaling for convolutional neural networks. In: International conference on machine learning, pp 6105–6114. PMLR
39.
Zurück zum Zitat Zhuang S, Ping W, Boran J, Maosong L (2020) Learned features of leaf phenotype to monitor maize water status in the fields. Comp Elect Agri 172:105347CrossRef Zhuang S, Ping W, Boran J, Maosong L (2020) Learned features of leaf phenotype to monitor maize water status in the fields. Comp Elect Agri 172:105347CrossRef
40.
Zurück zum Zitat Nagi R, Tripathy SS (2022) Deep convolutional neural network based disease identification in grapevine leaf images. Multimed Tools Appls 81(18):24995–25006CrossRef Nagi R, Tripathy SS (2022) Deep convolutional neural network based disease identification in grapevine leaf images. Multimed Tools Appls 81(18):24995–25006CrossRef
41.
Zurück zum Zitat Modi RU, Chandel AK, Chandel NS, Dubey K, Subeesh A, Singh AK, Kancheti M (2023) State-of-the-art computer vision techniques for automated sugarcane lodging classification. Field Crops Res 291:108797CrossRef Modi RU, Chandel AK, Chandel NS, Dubey K, Subeesh A, Singh AK, Kancheti M (2023) State-of-the-art computer vision techniques for automated sugarcane lodging classification. Field Crops Res 291:108797CrossRef
42.
Zurück zum Zitat Esgario JG, Krohling RA, Ventura JA (2020) Deep learning for classification and severity estimation of coffee leaf biotic stress. Comp Elect Agri 169:105162CrossRef Esgario JG, Krohling RA, Ventura JA (2020) Deep learning for classification and severity estimation of coffee leaf biotic stress. Comp Elect Agri 169:105162CrossRef
43.
Zurück zum Zitat Sunil GC, Koparan C, Ahmed MR, Zhang Y, Howatt K, Sun X (2022) A study on deep learning algorithm performance on weed and crop species identification under different image background. Artif Intell Agri 6:242–256 Sunil GC, Koparan C, Ahmed MR, Zhang Y, Howatt K, Sun X (2022) A study on deep learning algorithm performance on weed and crop species identification under different image background. Artif Intell Agri 6:242–256
45.
Zurück zum Zitat Candido-Mireles M, Hernandez-Gama R, Salas J (2023) Detecting vineyard plants stress in situ using deep learning. Comp Elect Agri 210:107837CrossRef Candido-Mireles M, Hernandez-Gama R, Salas J (2023) Detecting vineyard plants stress in situ using deep learning. Comp Elect Agri 210:107837CrossRef
46.
Zurück zum Zitat Espejo-Garcia B, Malounas I, Mylonas N, Kasimati A, Fountas S (2022) Using EfficientNet and transfer learning for image-based diagnosis of nutrient deficiencies. Comp Elect Agri 196:106868CrossRef Espejo-Garcia B, Malounas I, Mylonas N, Kasimati A, Fountas S (2022) Using EfficientNet and transfer learning for image-based diagnosis of nutrient deficiencies. Comp Elect Agri 196:106868CrossRef
47.
Zurück zum Zitat Jung M, Song JS, Shin AY, Choi B, Go S, Kwon SY, Park J, Park SG, Kim YM (2023) Construction of deep learning-based disease detection model in plants. Sci Rep 13(1):7331CrossRef Jung M, Song JS, Shin AY, Choi B, Go S, Kwon SY, Park J, Park SG, Kim YM (2023) Construction of deep learning-based disease detection model in plants. Sci Rep 13(1):7331CrossRef
48.
Zurück zum Zitat Shahoveisi F, Taheri Gorji H, Shahabi S, Hosseinirad S, Markell S, Vasefi F (2023) Application of image processing and transfer learning for the detection of rust disease. Sci Rep 13(1):5133CrossRef Shahoveisi F, Taheri Gorji H, Shahabi S, Hosseinirad S, Markell S, Vasefi F (2023) Application of image processing and transfer learning for the detection of rust disease. Sci Rep 13(1):5133CrossRef
49.
Zurück zum Zitat Malvade NN, Yakkundimath R, Saunshi G, Elemmi MC, Baraki P (2022) A comparative analysis of paddy crop biotic stress classification using pre-trained deep neural networks. Artif Intell Agri 6:167–175 Malvade NN, Yakkundimath R, Saunshi G, Elemmi MC, Baraki P (2022) A comparative analysis of paddy crop biotic stress classification using pre-trained deep neural networks. Artif Intell Agri 6:167–175
50.
Zurück zum Zitat Sai Reddy B, Neeraja S (2022) Plant leaf disease classification and damage detection system using deep learning models. Multimed Tools Appl 81(17):24021–24040CrossRef Sai Reddy B, Neeraja S (2022) Plant leaf disease classification and damage detection system using deep learning models. Multimed Tools Appl 81(17):24021–24040CrossRef
51.
Zurück zum Zitat Azimi S, Kaur T, Gandhi TK (2021) A deep learning approach to measure stress level in plants due to Nitrogen deficiency. Measurement 173:108650CrossRef Azimi S, Kaur T, Gandhi TK (2021) A deep learning approach to measure stress level in plants due to Nitrogen deficiency. Measurement 173:108650CrossRef
52.
Zurück zum Zitat Razfar N, True J, Bassiouny R, Venkatesh V, Kashef R (2022) Weed detection in soybean crops using custom lightweight deep learning models. J Agri Food Res 8:100308 Razfar N, True J, Bassiouny R, Venkatesh V, Kashef R (2022) Weed detection in soybean crops using custom lightweight deep learning models. J Agri Food Res 8:100308
Metadaten
Titel
A deep learning approach for early detection of drought stress in maize using proximal scale digital images
verfasst von
Pooja Goyal
Rakesh Sharda
Mukesh Saini
Mukesh Siag
Publikationsdatum
17.11.2023
Verlag
Springer London
Erschienen in
Neural Computing and Applications / Ausgabe 4/2024
Print ISSN: 0941-0643
Elektronische ISSN: 1433-3058
DOI
https://doi.org/10.1007/s00521-023-09219-z

Weitere Artikel der Ausgabe 4/2024

Neural Computing and Applications 4/2024 Zur Ausgabe

Premium Partner