Skip to main content
Erschienen in: Medical & Biological Engineering & Computing 11/2018

19.05.2018 | Original Article

A fingertip force prediction model for grasp patterns characterised from the chaotic behaviour of EEG

verfasst von: Rinku Roy, Debdeep Sikdar, Manjunatha Mahadevappa, C. S. Kumar

Erschienen in: Medical & Biological Engineering & Computing | Ausgabe 11/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A stable grasp is attained through appropriate hand preshaping and precise fingertip forces. Here, we have proposed a method to decode grasp patterns from motor imagery and subsequent fingertip force estimation model with a slippage avoidance strategy. We have developed a feature-based classification of electroencephalography (EEG) associated with imagination of the grasping postures. Chaotic behaviour of EEG for different grasping patterns has been utilised to capture the dynamics of associated motor activities. We have computed correlation dimension (CD) as the feature and classified with “one against one” multiclass support vector machine (SVM) to discriminate between different grasping patterns. The result of the analysis showed varying classification accuracies at different subband levels. Broad categories of grasping patterns, namely, power grasp and precision grasp, were classified at a 96.0% accuracy rate in the alpha subband. Furthermore, power grasp subtypes were classified with an accuracy of 97.2% in the upper beta subband, whereas precision grasp subtypes showed relatively lower 75.0% accuracy in the alpha subband. Following assessment of fingertip force distributions while grasping, a nonlinear autoregressive (NAR) model with proper prediction of fingertip forces was proposed for each grasp pattern. A slippage detection strategy has been incorporated with automatic recalibration of the regripping force. Intention of each grasp pattern associated with corresponding fingertip force model was virtualised in this work. This integrated system can be utilised as the control strategy for prosthetic hand in the future.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Acharya S, Fifer MS, Benz HL, Crone NE, Thakor NV (2010) Electrocorticographic amplitude predicts finger positions during slow grasping motions of the hand. J Neural Eng 7(4):046,002CrossRef Acharya S, Fifer MS, Benz HL, Crone NE, Thakor NV (2010) Electrocorticographic amplitude predicts finger positions during slow grasping motions of the hand. J Neural Eng 7(4):046,002CrossRef
2.
Zurück zum Zitat Agashe HA, Contreras-Vidal JL (2013) Decoding the evolving grasping gesture from electroencephalographic (EEG) activity. In: 2013 35th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 5590–5593 Agashe HA, Contreras-Vidal JL (2013) Decoding the evolving grasping gesture from electroencephalographic (EEG) activity. In: 2013 35th Annual international conference of the IEEE engineering in medicine and biology society (EMBC). IEEE, pp 5590–5593
3.
4.
Zurück zum Zitat Benmouiza K, Cheknane A (2013) Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models. Energy Convers Manag 75:561–569CrossRef Benmouiza K, Cheknane A (2013) Forecasting hourly global solar radiation using hybrid k-means and nonlinear autoregressive neural network models. Energy Convers Manag 75:561–569CrossRef
5.
Zurück zum Zitat Bennett KP, Campbell C (2000) Support vector machines: hype or hallelujah? Acm Sigkdd Explor Newslett 2(2):1–13CrossRef Bennett KP, Campbell C (2000) Support vector machines: hype or hallelujah? Acm Sigkdd Explor Newslett 2(2):1–13CrossRef
6.
Zurück zum Zitat Berk RA (2016) Erratum to: statistical learning from a regression perspective. In: Statistical learning from a regression perspective. Springer, p 61 Berk RA (2016) Erratum to: statistical learning from a regression perspective. In: Statistical learning from a regression perspective. Springer, p 61
7.
Zurück zum Zitat Birznieks I, Jenmalm P, Goodwin AW, Johansson RS (2001) Encoding of direction of fingertip forces by human tactile afferents. J Neurosci 21(20):8222–8237CrossRefPubMedPubMedCentral Birznieks I, Jenmalm P, Goodwin AW, Johansson RS (2001) Encoding of direction of fingertip forces by human tactile afferents. J Neurosci 21(20):8222–8237CrossRefPubMedPubMedCentral
8.
Zurück zum Zitat Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Mining Knowl Discov 2(2):121–167CrossRef Burges CJ (1998) A tutorial on support vector machines for pattern recognition. Data Mining Knowl Discov 2(2):121–167CrossRef
9.
Zurück zum Zitat Cadoret G, Smith AM (1996) Friction, not texture, dictates grip forces used during object manipulation. J Neurophysiol 75(5):1963–1969CrossRefPubMed Cadoret G, Smith AM (1996) Friction, not texture, dictates grip forces used during object manipulation. J Neurophysiol 75(5):1963–1969CrossRefPubMed
10.
Zurück zum Zitat Cao L (1997) Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlin Phenom 110(1-2):43–50CrossRef Cao L (1997) Practical method for determining the minimum embedding dimension of a scalar time series. Physica D: Nonlin Phenom 110(1-2):43–50CrossRef
11.
Zurück zum Zitat Chow T, Leung CT (1996) Nonlinear autoregressive integrated neural network model for short-term load forecasting. IEE Proc-Gen Transm Distrib 143(5):500–506CrossRef Chow T, Leung CT (1996) Nonlinear autoregressive integrated neural network model for short-term load forecasting. IEE Proc-Gen Transm Distrib 143(5):500–506CrossRef
12.
Zurück zum Zitat Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJ, Velliste M, Boninger ML, Schwartz AB (2013) High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866):557–564CrossRefPubMedPubMedCentral Collinger JL, Wodlinger B, Downey JE, Wang W, Tyler-Kabara EC, Weber DJ, McMorland AJ, Velliste M, Boninger ML, Schwartz AB (2013) High-performance neuroprosthetic control by an individual with tetraplegia. Lancet 381(9866):557–564CrossRefPubMedPubMedCentral
13.
Zurück zum Zitat Cordella F, Gentile C, Zollo L, Barone R, Sacchetti R, Davalli A, Siciliano B, Guglielmelli E (2016) A force-and-slippage control strategy for a poliarticulated prosthetic hand. In: 2016 IEEE International conference on robotics and automation (ICRA). IEEE, pp 3524–3529 Cordella F, Gentile C, Zollo L, Barone R, Sacchetti R, Davalli A, Siciliano B, Guglielmelli E (2016) A force-and-slippage control strategy for a poliarticulated prosthetic hand. In: 2016 IEEE International conference on robotics and automation (ICRA). IEEE, pp 3524–3529
14.
Zurück zum Zitat Debnath R, Takahide N, Takahashi H (2004) A decision based one-against-one method for multi-class support vector machine. Pattern Anal Applic 7(2):164–175CrossRef Debnath R, Takahide N, Takahashi H (2004) A decision based one-against-one method for multi-class support vector machine. Pattern Anal Applic 7(2):164–175CrossRef
15.
Zurück zum Zitat Eder C, Sokić D, Ċoviċković-Ṡternić N, Mijajlović M, Savić M, Sinkjær T, Popović D (2006) Symmetry of post-movement beta-ERS, and motor recovery from stroke: a low-resolution EEG pilot study. Eur J Neurol 13(12):1312–1323CrossRefPubMed Eder C, Sokić D, Ċoviċković-Ṡternić N, Mijajlović M, Savić M, Sinkjær T, Popović D (2006) Symmetry of post-movement beta-ERS, and motor recovery from stroke: a low-resolution EEG pilot study. Eur J Neurol 13(12):1312–1323CrossRefPubMed
16.
Zurück zum Zitat Engeberg ED, Meek SG (2013) Adaptive sliding mode control for prosthetic hands to simultaneously prevent slip and minimize deformation of grasped objects. IEEE/ASME Trans Mechatron 18(1):376–385CrossRef Engeberg ED, Meek SG (2013) Adaptive sliding mode control for prosthetic hands to simultaneously prevent slip and minimize deformation of grasped objects. IEEE/ASME Trans Mechatron 18(1):376–385CrossRef
17.
Zurück zum Zitat Erfanian A, Moghaddas S (1999) Prediction of hand movement from the event-related EEG using neural networks. In: [Engineering in medicine and biology, 1999. 21st Annual conference and the 1999 annual fall meetring of the biomedical engineering society] BMES/EMBS Conference, 1999. Proceedings of the first joint, vol 1. IEEE, pp 430–vol Erfanian A, Moghaddas S (1999) Prediction of hand movement from the event-related EEG using neural networks. In: [Engineering in medicine and biology, 1999. 21st Annual conference and the 1999 annual fall meetring of the biomedical engineering society] BMES/EMBS Conference, 1999. Proceedings of the first joint, vol 1. IEEE, pp 430–vol
18.
Zurück zum Zitat Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164CrossRefPubMed Hochberg LR, Serruya MD, Friehs GM, Mukand JA, Saleh M, Caplan AH, Branner A, Chen D, Penn RD, Donoghue JP (2006) Neuronal ensemble control of prosthetic devices by a human with tetraplegia. Nature 442(7099):164CrossRefPubMed
19.
Zurück zum Zitat Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P et al (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398):372CrossRefPubMedPubMedCentral Hochberg LR, Bacher D, Jarosiewicz B, Masse NY, Simeral JD, Vogel J, Haddadin S, Liu J, Cash SS, van der Smagt P et al (2012) Reach and grasp by people with tetraplegia using a neurally controlled robotic arm. Nature 485(7398):372CrossRefPubMedPubMedCentral
20.
Zurück zum Zitat Hsu CW, Lin CJ (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw 13(2):415–425CrossRefPubMed Hsu CW, Lin CJ (2002) A comparison of methods for multiclass support vector machines. IEEE Trans Neural Netw 13(2):415–425CrossRefPubMed
21.
Zurück zum Zitat Iasemidis LD, Olson LD, Savit RS, Sackellares JC (1994) Time dependencies in the occurrences of epileptic seizures. Epilepsy Res 17(1):81–94CrossRefPubMed Iasemidis LD, Olson LD, Savit RS, Sackellares JC (1994) Time dependencies in the occurrences of epileptic seizures. Epilepsy Res 17(1):81–94CrossRefPubMed
22.
Zurück zum Zitat Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37CrossRef Jain AK, Duin RPW, Mao J (2000) Statistical pattern recognition: a review. IEEE Trans Pattern Anal Mach Intell 22(1):4–37CrossRef
23.
Zurück zum Zitat Kubanek J, Miller K, Ojemann J, Wolpaw J, Schalk G (2009) Decoding flexion of individual fingers using electrocorticographic signals in humans. J Neural Eng 6(6):066,001CrossRef Kubanek J, Miller K, Ojemann J, Wolpaw J, Schalk G (2009) Decoding flexion of individual fingers using electrocorticographic signals in humans. J Neural Eng 6(6):066,001CrossRef
24.
Zurück zum Zitat Kuiken TA, Dumanian G, Lipschutz R, Miller L, Stubblefield K (2004) The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet Orthot Int 28(3):245–253PubMed Kuiken TA, Dumanian G, Lipschutz R, Miller L, Stubblefield K (2004) The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. Prosthet Orthot Int 28(3):245–253PubMed
25.
Zurück zum Zitat Kuiken TA, Li G, Lock BA, Lipschutz RD, Miller LA, Stubblefield KA, Englehart KB (2009) Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. Jama 301(6):619–628CrossRefPubMedPubMedCentral Kuiken TA, Li G, Lock BA, Lipschutz RD, Miller LA, Stubblefield KA, Englehart KB (2009) Targeted muscle reinnervation for real-time myoelectric control of multifunction artificial arms. Jama 301(6):619–628CrossRefPubMedPubMedCentral
26.
Zurück zum Zitat Lee E (1999) Force and impact control for robot manipulators using time delay. In: Proceedings of the IEEE international symposium on industrial electronics, 1999. ISIE’99, vol 1. IEEE, pp 151–156 Lee E (1999) Force and impact control for robot manipulators using time delay. In: Proceedings of the IEEE international symposium on industrial electronics, 1999. ISIE’99, vol 1. IEEE, pp 151–156
27.
Zurück zum Zitat Li G, Schultz AE, Kuiken TA (2010) Quantifying pattern recognition—based myoelectric control of multifunctional transradial prostheses. IEEE Trans Neural Syst Rehab Eng Publ IEEE Eng Med Biol Soc 18(2):185CrossRef Li G, Schultz AE, Kuiken TA (2010) Quantifying pattern recognition—based myoelectric control of multifunctional transradial prostheses. IEEE Trans Neural Syst Rehab Eng Publ IEEE Eng Med Biol Soc 18(2):185CrossRef
28.
Zurück zum Zitat Miller K, Zanos S, Fetz E, Den Nijs M, Ojemann J (2009) Decoupling the cortical power spectrum reveals real-time representation of individual finger movements in humans. J Neurosci 29(10):3132–3137CrossRefPubMedPubMedCentral Miller K, Zanos S, Fetz E, Den Nijs M, Ojemann J (2009) Decoupling the cortical power spectrum reveals real-time representation of individual finger movements in humans. J Neurosci 29(10):3132–3137CrossRefPubMedPubMedCentral
29.
Zurück zum Zitat Napier JR, Tuttle RH (1993) Hands. Princeton University Press Napier JR, Tuttle RH (1993) Hands. Princeton University Press
30.
Zurück zum Zitat Naranjo J, Brovelli A, Longo R, Budai R, Kristeva R, Battaglini P (2007) EEG dynamics of the frontoparietal network during reaching preparation in humans. Neuroimage 34(4):1673–1682CrossRefPubMed Naranjo J, Brovelli A, Longo R, Budai R, Kristeva R, Battaglini P (2007) EEG dynamics of the frontoparietal network during reaching preparation in humans. Neuroimage 34(4):1673–1682CrossRefPubMed
31.
Zurück zum Zitat Pfurtscheller G, Da Silva FL (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857CrossRefPubMed Pfurtscheller G, Da Silva FL (1999) Event-related EEG/MEG synchronization and desynchronization: basic principles. Clin Neurophysiol 110(11):1842–1857CrossRefPubMed
32.
Zurück zum Zitat Pistohl T, Schulze-Bonhage A, Aertsen A, Mehring C, Ball T (2012) Decoding natural grasp types from human ECoG. Neuroimage 59(1):248–260CrossRefPubMed Pistohl T, Schulze-Bonhage A, Aertsen A, Mehring C, Ball T (2012) Decoding natural grasp types from human ECoG. Neuroimage 59(1):248–260CrossRefPubMed
33.
Zurück zum Zitat Roy R, Mahadevappa M, Kumar C (2016) Trajectory path planning of EEG controlled robotic arm using GA. Procedia Comput Sci 84:147–151CrossRef Roy R, Mahadevappa M, Kumar C (2016) Trajectory path planning of EEG controlled robotic arm using GA. Procedia Comput Sci 84:147–151CrossRef
34.
Zurück zum Zitat Roy R, Sikdar D, Mahadevappa M, Kumar C (2017) EEG based motor imagery study of time domain features for classification of power and precision hand grasps. In: 2017 8th International IEEE/EMBS conference on neural engineering (NER). IEEE, pp 440–443 Roy R, Sikdar D, Mahadevappa M, Kumar C (2017) EEG based motor imagery study of time domain features for classification of power and precision hand grasps. In: 2017 8th International IEEE/EMBS conference on neural engineering (NER). IEEE, pp 440–443
35.
Zurück zum Zitat Salenius S, Salmelin R, Neuper C, Pfurtscheller G, Hari R (1996) Human cortical 40 hz rhythm is closely related to emg rhythmicity. Neurosci Lett 213(2):75–78CrossRefPubMed Salenius S, Salmelin R, Neuper C, Pfurtscheller G, Hari R (1996) Human cortical 40 hz rhythm is closely related to emg rhythmicity. Neurosci Lett 213(2):75–78CrossRefPubMed
36.
Zurück zum Zitat Takens F et al. (1981) Dynamical systems and turbulence. Lect Notes Math 898(9):366CrossRef Takens F et al. (1981) Dynamical systems and turbulence. Lect Notes Math 898(9):366CrossRef
37.
Zurück zum Zitat Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453(7198):1098CrossRefPubMed Velliste M, Perel S, Spalding MC, Whitford AS, Schwartz AB (2008) Cortical control of a prosthetic arm for self-feeding. Nature 453(7198):1098CrossRefPubMed
38.
Zurück zum Zitat Wheaton L, Fridman E, Bohlhalter S, Vorbach S, Hallett M (2009) Left parietal activation related to planning, executing and suppressing praxis hand movements. Clin Neurophysiol 120(5):980–986CrossRefPubMedPubMedCentral Wheaton L, Fridman E, Bohlhalter S, Vorbach S, Hallett M (2009) Left parietal activation related to planning, executing and suppressing praxis hand movements. Clin Neurophysiol 120(5):980–986CrossRefPubMedPubMedCentral
39.
Zurück zum Zitat Wheaton LA, Carpenter M, Mizelle J, Forrester L (2008) Preparatory band specific premotor cortical activity differentiates upper and lower extremity movement. Exper Brain Res 184(1):121–126CrossRef Wheaton LA, Carpenter M, Mizelle J, Forrester L (2008) Preparatory band specific premotor cortical activity differentiates upper and lower extremity movement. Exper Brain Res 184(1):121–126CrossRef
40.
Zurück zum Zitat Williams GP (1997) Chaos theory tamed. Joseph Henry Press Williams GP (1997) Chaos theory tamed. Joseph Henry Press
41.
Zurück zum Zitat Wodlinger B, Downey J, Tyler-Kabara E, Schwartz A, Boninger M, Collinger J (2014) Ten-dimensional anthropomorphic arm control in a human brain- machine interface: difficulties, solutions, and limitations. J Neural Eng 12(1):016,011CrossRef Wodlinger B, Downey J, Tyler-Kabara E, Schwartz A, Boninger M, Collinger J (2014) Ten-dimensional anthropomorphic arm control in a human brain- machine interface: difficulties, solutions, and limitations. J Neural Eng 12(1):016,011CrossRef
42.
Zurück zum Zitat Xu Y, Hollerbach JM, Ma D (1995) A nonlinear PD controller for force and contact transient control. IEEE Control Syst Mag 15(1):15–21CrossRef Xu Y, Hollerbach JM, Ma D (1995) A nonlinear PD controller for force and contact transient control. IEEE Control Syst Mag 15(1):15–21CrossRef
Metadaten
Titel
A fingertip force prediction model for grasp patterns characterised from the chaotic behaviour of EEG
verfasst von
Rinku Roy
Debdeep Sikdar
Manjunatha Mahadevappa
C. S. Kumar
Publikationsdatum
19.05.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Medical & Biological Engineering & Computing / Ausgabe 11/2018
Print ISSN: 0140-0118
Elektronische ISSN: 1741-0444
DOI
https://doi.org/10.1007/s11517-018-1833-0

Weitere Artikel der Ausgabe 11/2018

Medical & Biological Engineering & Computing 11/2018 Zur Ausgabe