Skip to main content
Erschienen in: Journal of Materials Science 23/2021

17.05.2021 | Chemical routes to materials

A flame-retardant post-synthetically functionalized COF sponge as absorbent for spilled oil recovery

verfasst von: Yanyan Liu, Qiang Lyu, Zhikun Wang, Yi Sun, Chunling Li, Shuangqing Sun, Li-Chiang Lin, Songqing Hu

Erschienen in: Journal of Materials Science | Ausgabe 23/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Frequent oil spills pose severe damages to the marine ecosystems and result in hazardous fires when the spilled oil is ignited. Developing high-performance, flame-retardant absorbent materials for large-scale water treatment is therefore urgently needed. Herein, we report an efficient post-synthetic silylation process to achieve a porous covalent-organic framework (COF), denoted as [CF3] − COF. The absorption capacity of oils and organic solvents in [CF3] − COF was explored by experimental measurements with the absorption mechanism illuminated by molecular simulations. The prepared [CF3] − COF powders were further loaded into melamine sponge to yield a highly hydrophobic absorbent denoted as [CF3] − COF@sponge, which was demonstrated to effectively remove oils/organic solvents with outstanding stability and excellent flame retardancy. Moreover, an oil-collecting apparatus was designed to continuously separate oils/organic solvents from water. The rapid recovery of oils/organic solvents from water using this device proves the great promise of [CF3] − COF@sponge in water treatment.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
3.
Zurück zum Zitat Gu JC, Xiao P, Huang YJ, Zhang JW, Chen T (2015) Controlled functionalization of carbon nanotubes as superhydrophobic material for adjustable oil/water separation. J Mater Chem A 3:4124–4128CrossRef Gu JC, Xiao P, Huang YJ, Zhang JW, Chen T (2015) Controlled functionalization of carbon nanotubes as superhydrophobic material for adjustable oil/water separation. J Mater Chem A 3:4124–4128CrossRef
4.
Zurück zum Zitat Xue ZX, Cao YZ, Liu N, Feng L, Jiang L (2014) Special wettable materials for oil/water separation. J Mater Chem A 2:2445–2460CrossRef Xue ZX, Cao YZ, Liu N, Feng L, Jiang L (2014) Special wettable materials for oil/water separation. J Mater Chem A 2:2445–2460CrossRef
5.
Zurück zum Zitat Chen XM, Chen GH, Yue PL (2000) Separation of pollutants from restaurant wastewater by electrocoagulation. Sep Purif Technol 19:65–76CrossRef Chen XM, Chen GH, Yue PL (2000) Separation of pollutants from restaurant wastewater by electrocoagulation. Sep Purif Technol 19:65–76CrossRef
6.
Zurück zum Zitat Zhang L, Li HQ, Lai XJ, Su XJ, Liang T, Zeng XG (2017) Thiolated graphene-based superhydrophobic sponges for oil-water separation. Chem Eng J 316:736–743CrossRef Zhang L, Li HQ, Lai XJ, Su XJ, Liang T, Zeng XG (2017) Thiolated graphene-based superhydrophobic sponges for oil-water separation. Chem Eng J 316:736–743CrossRef
7.
Zurück zum Zitat Zhang JP, Seeger S (2011) Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv Funct Mater 21:4699–4704CrossRef Zhang JP, Seeger S (2011) Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv Funct Mater 21:4699–4704CrossRef
8.
Zurück zum Zitat Hayase G, Kanamori K, Fukuchi M, Kaji H, Nakanishi K (2013) Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water. Angew Chem Int Ed 52:1986–1989CrossRef Hayase G, Kanamori K, Fukuchi M, Kaji H, Nakanishi K (2013) Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water. Angew Chem Int Ed 52:1986–1989CrossRef
9.
Zurück zum Zitat Yue XJ, Zhang T, Yang DY, Qiu FX, Rong J, Xu JC, Fang JS (2017) The synthesis of hierarchical porous Al2O3/acrylic resin composites as durable, efficient and recyclable absorbents for oil/water separation. Chem Eng J 309:522–531CrossRef Yue XJ, Zhang T, Yang DY, Qiu FX, Rong J, Xu JC, Fang JS (2017) The synthesis of hierarchical porous Al2O3/acrylic resin composites as durable, efficient and recyclable absorbents for oil/water separation. Chem Eng J 309:522–531CrossRef
10.
Zurück zum Zitat Mu XW, Zhou X, Wang W, Xiao YL, Liao C, Han LF, Kan YC, Song L (2021) Design of compressible flame retardant grafted porous organic polymer based separator with high fre safety and good electrochemical properties. Chem Eng J 405:126946CrossRef Mu XW, Zhou X, Wang W, Xiao YL, Liao C, Han LF, Kan YC, Song L (2021) Design of compressible flame retardant grafted porous organic polymer based separator with high fre safety and good electrochemical properties. Chem Eng J 405:126946CrossRef
11.
Zurück zum Zitat Mu XW, Cai W, Xiao YL, He LX, Zhou X, Wang HJ, Guo WW, Xing WY, Song L (2020) A novel strategy to prepare COFs based BN co-doped carbon nanosheet for enhancing mechanical performance and fire safety to PVA nanocomposite. Compos Part B-Eng 198:108218CrossRef Mu XW, Cai W, Xiao YL, He LX, Zhou X, Wang HJ, Guo WW, Xing WY, Song L (2020) A novel strategy to prepare COFs based BN co-doped carbon nanosheet for enhancing mechanical performance and fire safety to PVA nanocomposite. Compos Part B-Eng 198:108218CrossRef
12.
Zurück zum Zitat Wang B, Liang WX, Guo ZG, Liu WM (2015) Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem Soc Rev 44:336–361CrossRef Wang B, Liang WX, Guo ZG, Liu WM (2015) Biomimetic super-lyophobic and super-lyophilic materials applied for oil/water separation: a new strategy beyond nature. Chem Soc Rev 44:336–361CrossRef
13.
Zurück zum Zitat Fernandes SPS, Romero V, EspiÇa B, Salonen LM (2019) Tailoring covalent organic frameworks to capture water contaminants. Chem Eur J 25:6461–6473CrossRef Fernandes SPS, Romero V, EspiÇa B, Salonen LM (2019) Tailoring covalent organic frameworks to capture water contaminants. Chem Eur J 25:6461–6473CrossRef
14.
Zurück zum Zitat Liu FY, Nie CY, Dong QQ, Ma ZY, Liu W, Tong MP (2020) AgI modified covalent organic frameworks for effective bacterial disinfection and organic pollutant degradation under visible light irradiation. J Haz Mat 398:122865CrossRef Liu FY, Nie CY, Dong QQ, Ma ZY, Liu W, Tong MP (2020) AgI modified covalent organic frameworks for effective bacterial disinfection and organic pollutant degradation under visible light irradiation. J Haz Mat 398:122865CrossRef
15.
Zurück zum Zitat Ruan CP, Ai KL, Li XB, Lu LH (2014) A superhydrophobic sponge with excellent absorbency and flame retardancy. Angew Chem Int Ed 53:5556–5560CrossRef Ruan CP, Ai KL, Li XB, Lu LH (2014) A superhydrophobic sponge with excellent absorbency and flame retardancy. Angew Chem Int Ed 53:5556–5560CrossRef
16.
Zurück zum Zitat Qi MH, Gao ML, Liu L, Han ZB (2018) Robust bifunctional core-shell MOF@ POP catalyst for one-pot tandem reaction. Inorg Chem 57:14467–14470CrossRef Qi MH, Gao ML, Liu L, Han ZB (2018) Robust bifunctional core-shell MOF@ POP catalyst for one-pot tandem reaction. Inorg Chem 57:14467–14470CrossRef
17.
Zurück zum Zitat Ding SY, Dong M, Wang YW, Chen YT, Wang HZ, Su CY, Wang W (2016) Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury (II). J Am Chem Soc 138:3031–3037CrossRef Ding SY, Dong M, Wang YW, Chen YT, Wang HZ, Su CY, Wang W (2016) Thioether-based fluorescent covalent organic framework for selective detection and facile removal of mercury (II). J Am Chem Soc 138:3031–3037CrossRef
18.
Zurück zum Zitat Sun Q, Aguila B, Perman JD, Earl L, Abney CW, Cheng YC, Wei H, Nguyen N, Wojtas L, Ma SQ (2017) Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal. J Am Chem Soc 139:2786–2793CrossRef Sun Q, Aguila B, Perman JD, Earl L, Abney CW, Cheng YC, Wei H, Nguyen N, Wojtas L, Ma SQ (2017) Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal. J Am Chem Soc 139:2786–2793CrossRef
19.
Zurück zum Zitat Li Y, Yang CX, Yan XP (2017) Controllable preparation of core–shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution. Chem Commun 53:2511–2514CrossRef Li Y, Yang CX, Yan XP (2017) Controllable preparation of core–shell magnetic covalent-organic framework nanospheres for efficient adsorption and removal of bisphenols in aqueous solution. Chem Commun 53:2511–2514CrossRef
20.
Zurück zum Zitat Lin G, Gao CH, Zheng Q, Lei ZX, Geng HJ, Lin Z, Yang HH, Cai ZW (2017) Room-temperature synthesis of core–shell structured magnetic covalent organic frameworks for efficient enrichment of peptides and simultaneous exclusion of proteins. Chem Commun 53:3649–3652CrossRef Lin G, Gao CH, Zheng Q, Lei ZX, Geng HJ, Lin Z, Yang HH, Cai ZW (2017) Room-temperature synthesis of core–shell structured magnetic covalent organic frameworks for efficient enrichment of peptides and simultaneous exclusion of proteins. Chem Commun 53:3649–3652CrossRef
21.
Zurück zum Zitat Ding SY, Wang W (2013) Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev 42:548–568CrossRef Ding SY, Wang W (2013) Covalent organic frameworks (COFs): from design to applications. Chem Soc Rev 42:548–568CrossRef
22.
Zurück zum Zitat Segura J, Royuela S, Ramos M (2019) Post-synthetic modification of covalent organic frameworks. Chem Soc Rev 48:3903–3945CrossRef Segura J, Royuela S, Ramos M (2019) Post-synthetic modification of covalent organic frameworks. Chem Soc Rev 48:3903–3945CrossRef
23.
Zurück zum Zitat Feng X, Ding XS, Jiang DL (2012) Covalent organic frameworks. Chem Soc Rev 41:6010–6022CrossRef Feng X, Ding XS, Jiang DL (2012) Covalent organic frameworks. Chem Soc Rev 41:6010–6022CrossRef
24.
Zurück zum Zitat Pagliaro M, Ciriminna R (2005) New fluorinated functional materials. J Mater Chem 15:4981–4991CrossRef Pagliaro M, Ciriminna R (2005) New fluorinated functional materials. J Mater Chem 15:4981–4991CrossRef
25.
Zurück zum Zitat Han N, Zhang ZX, Gao HK, Qian YQ, Tan LL, Yang C, Zhang HR, Cui ZY, Li W, Zhang XX (2019) Superhydrophobic covalent organic frameworks prepared via pore-surface modifications for functional coatings under harsh conditions. ACS Appl Mater Interfaces 12:2926–2934CrossRef Han N, Zhang ZX, Gao HK, Qian YQ, Tan LL, Yang C, Zhang HR, Cui ZY, Li W, Zhang XX (2019) Superhydrophobic covalent organic frameworks prepared via pore-surface modifications for functional coatings under harsh conditions. ACS Appl Mater Interfaces 12:2926–2934CrossRef
26.
Zurück zum Zitat Sun Q, Aguila BA, Perman J, Butts T, Xiao FS, Ma SQ (2018) Integrating superwettability within covalent organic frameworks for functional coating. Chem 4:1726–1739CrossRef Sun Q, Aguila BA, Perman J, Butts T, Xiao FS, Ma SQ (2018) Integrating superwettability within covalent organic frameworks for functional coating. Chem 4:1726–1739CrossRef
27.
Zurück zum Zitat Jiang YZ, Liu CY, Li YH, Huang AS (2019) Stainless-steel-net-supported superhydrophobic COF coating for oil/water separation. J Membr Sci 587:117177CrossRef Jiang YZ, Liu CY, Li YH, Huang AS (2019) Stainless-steel-net-supported superhydrophobic COF coating for oil/water separation. J Membr Sci 587:117177CrossRef
28.
Zurück zum Zitat Zhu HG, Yang S, Chen DY, Li NJ, Xu QF, Li H, He JH, Lu JM (2016) A robust absorbent material based on light-responsive superhydrophobic melamine sponge for oil recovery. Adv Mater Interfaces 3:1500683CrossRef Zhu HG, Yang S, Chen DY, Li NJ, Xu QF, Li H, He JH, Lu JM (2016) A robust absorbent material based on light-responsive superhydrophobic melamine sponge for oil recovery. Adv Mater Interfaces 3:1500683CrossRef
29.
Zurück zum Zitat Matsumoto MR, Dasari R, Ji W, Feriante CH, Parker TCR, Marder SR, Dichtel W (2017) Rapid, low temperature formation of imine-linked covalent organic frameworks catalyzed by metal triflates. J Am Chem Soc 139:4999–5002CrossRef Matsumoto MR, Dasari R, Ji W, Feriante CH, Parker TCR, Marder SR, Dichtel W (2017) Rapid, low temperature formation of imine-linked covalent organic frameworks catalyzed by metal triflates. J Am Chem Soc 139:4999–5002CrossRef
30.
Zurück zum Zitat Chen R, Shi J, Ma Y, Lin GQ, Lang XJ, Wang C (2019) Designed synthesis of a 2D Porphyrin-Based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew Chem Int Ed 58:6430–6434CrossRef Chen R, Shi J, Ma Y, Lin GQ, Lang XJ, Wang C (2019) Designed synthesis of a 2D Porphyrin-Based sp2 carbon-conjugated covalent organic framework for heterogeneous photocatalysis. Angew Chem Int Ed 58:6430–6434CrossRef
31.
Zurück zum Zitat Frenkel D, Smit B (2002) Understanding molecular simulation: From algorithms to applications. Academic Press, New York 1:1–638 Frenkel D, Smit B (2002) Understanding molecular simulation: From algorithms to applications. Academic Press, New York 1:1–638
32.
Zurück zum Zitat Wang YG, Zhu YM, Yang C, Liu JH, Jiang W, Liang B (2018) Facile two-step strategy for the construction of a mechanically stable three-dimensional superhydrophobic structure for continuous oil-water separation. ACS Appl Mater Interfaces 10:24149–24156CrossRef Wang YG, Zhu YM, Yang C, Liu JH, Jiang W, Liang B (2018) Facile two-step strategy for the construction of a mechanically stable three-dimensional superhydrophobic structure for continuous oil-water separation. ACS Appl Mater Interfaces 10:24149–24156CrossRef
33.
Zurück zum Zitat Liu SH, Xu QF, Latthe SB, Gurav A, Xing RM (2015) Superhydrophobic/superoleophilic magnetic polyurethane sponge for oil/water separation. Rsc Adv 5:68293–68298CrossRef Liu SH, Xu QF, Latthe SB, Gurav A, Xing RM (2015) Superhydrophobic/superoleophilic magnetic polyurethane sponge for oil/water separation. Rsc Adv 5:68293–68298CrossRef
34.
Zurück zum Zitat Jiang ZR, Ge J, Zhou YX, Wang ZYU, Chen DX, Yu SH, Jiang HL (2016) Coating sponge with a hydrophobic porous coordination polymer containing a low-energy CF3-decorated surface for continuous pumping recovery of an oil spill from water. NPG Asia Mater 8:e253CrossRef Jiang ZR, Ge J, Zhou YX, Wang ZYU, Chen DX, Yu SH, Jiang HL (2016) Coating sponge with a hydrophobic porous coordination polymer containing a low-energy CF3-decorated surface for continuous pumping recovery of an oil spill from water. NPG Asia Mater 8:e253CrossRef
35.
Zurück zum Zitat Wu L, Li LX, Li BC, Zhang JP, Wang AQ (2015) Magnetic, durable, and superhydrophobic polyurethane@Fe3O4@SiO2@fluoropolymer sponges for selective oil absorption and oil/water separation. ACS Appl Mater Interfaces 7:4936–4946CrossRef Wu L, Li LX, Li BC, Zhang JP, Wang AQ (2015) Magnetic, durable, and superhydrophobic polyurethane@Fe3O4@SiO2@fluoropolymer sponges for selective oil absorption and oil/water separation. ACS Appl Mater Interfaces 7:4936–4946CrossRef
36.
Zurück zum Zitat Karatum O, A. Steiner S, S. Griffin J, Shi W, L. Plata D, (2015) Flexible, mechanically durable aerogel composites for oil capture and recovery. ACS Appl Mater Interfaces 8:215–224CrossRef Karatum O, A. Steiner S, S. Griffin J, Shi W, L. Plata D, (2015) Flexible, mechanically durable aerogel composites for oil capture and recovery. ACS Appl Mater Interfaces 8:215–224CrossRef
37.
Zurück zum Zitat Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668CrossRef Zhang Z, Sèbe G, Rentsch D, Zimmermann T, Tingaut P (2014) Ultralightweight and flexible silylated nanocellulose sponges for the selective removal of oil from water. Chem Mater 26:2659–2668CrossRef
38.
Zurück zum Zitat Gui XC, Wei JQ, Wang KL, Cao AY, Zhu HW, Jia Y, Shu QK, Wu DH (2010) Carbon nanotube sponges. Adv Mater 22:617–621CrossRef Gui XC, Wei JQ, Wang KL, Cao AY, Zhu HW, Jia Y, Shu QK, Wu DH (2010) Carbon nanotube sponges. Adv Mater 22:617–621CrossRef
39.
Zurück zum Zitat Moore S (1998) Silicone flame retardant boosts properties of polycarbonate. Mod Plast 75:35–36 Moore S (1998) Silicone flame retardant boosts properties of polycarbonate. Mod Plast 75:35–36
Metadaten
Titel
A flame-retardant post-synthetically functionalized COF sponge as absorbent for spilled oil recovery
verfasst von
Yanyan Liu
Qiang Lyu
Zhikun Wang
Yi Sun
Chunling Li
Shuangqing Sun
Li-Chiang Lin
Songqing Hu
Publikationsdatum
17.05.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 23/2021
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-06006-w

Weitere Artikel der Ausgabe 23/2021

Journal of Materials Science 23/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.