Skip to main content
Erschienen in: Flow, Turbulence and Combustion 2/2018

10.08.2017

A Framework for Characterizing Structural Uncertainty in Large-Eddy Simulation Closures

verfasst von: Lluís Jofre, Stefan P. Domino, Gianluca Iaccarino

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Motivated by the sizable increase of available computing resources, large-eddy simulation of complex turbulent flow is becoming increasingly popular. The underlying filtering operation of this approach enables to represent only large-scale motions. However, the small-scale fluctuations and their effects on the resolved flow field require additional modeling. As a consequence, the assumptions made in the closure formulations become potential sources of incertitude that can impact the quantities of interest. The objective of this work is to introduce a framework for the systematic estimation of structural uncertainty in large-eddy simulation closures. In particular, the methodology proposed is independent of the initial model form, computationally efficient, and suitable to general flow solvers. The approach is based on introducing controlled perturbations to the turbulent stress tensor in terms of magnitude, shape and orientation, such that propagation of their effects can be assessed. The framework is rigorously described, and physically plausible bounds for the perturbations are proposed. As a means to test its performance, a comprehensive set of numerical experiments are reported for which physical interpretation of the deviations in the quantities of interest are discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Fußnoten
1
The summation convention is adopted for Latin, but not for Greek indices.
 
Literatur
1.
Zurück zum Zitat Hermeth, S., Staffelbach, G., Gicquel, L.Y.M., Poinsot, T.: LES Evaluation of the effects of equivalence ratio fluctuations on the dynamic flame response in a real gas turbine combustion chamber. Proc. Combust. Inst. 34, 3165–3173 (2013)CrossRef Hermeth, S., Staffelbach, G., Gicquel, L.Y.M., Poinsot, T.: LES Evaluation of the effects of equivalence ratio fluctuations on the dynamic flame response in a real gas turbine combustion chamber. Proc. Combust. Inst. 34, 3165–3173 (2013)CrossRef
2.
Zurück zum Zitat Bulat, G., Fedina, E., Fureby, C., Stopper, U.: Reacting flow in an industrial gas turbine combustor: LES and experimental analysis. Proc. Combust. Inst. 35, 3175–3183 (2015)CrossRef Bulat, G., Fedina, E., Fureby, C., Stopper, U.: Reacting flow in an industrial gas turbine combustor: LES and experimental analysis. Proc. Combust. Inst. 35, 3175–3183 (2015)CrossRef
3.
Zurück zum Zitat Masquelet, M., Yan, J., Dord, A., Laskowski, G., Shunn, L., Jofre, L., Iaccarino, G.: Uncertainty quantification in large eddy simulations of a rich-dome aviation gas turbine. In: Proceeding of the ASME Turbo Expo 2017, GT2017-64835, pp 1–11 (2017) Masquelet, M., Yan, J., Dord, A., Laskowski, G., Shunn, L., Jofre, L., Iaccarino, G.: Uncertainty quantification in large eddy simulations of a rich-dome aviation gas turbine. In: Proceeding of the ASME Turbo Expo 2017, GT2017-64835, pp 1–11 (2017)
4.
Zurück zum Zitat Ang, J., Evans, K., Geist, A., Heroux, M., Hovland, P., Marques, O., Curfman, L., Ng, E., Wild, S.: Workshop on Extreme-Scale Solvers: Transition to Future Architectures. Tech. Rep., U.S, Department of Energy, Office of Advanced Scientific Computing Research (2012) Ang, J., Evans, K., Geist, A., Heroux, M., Hovland, P., Marques, O., Curfman, L., Ng, E., Wild, S.: Workshop on Extreme-Scale Solvers: Transition to Future Architectures. Tech. Rep., U.S, Department of Energy, Office of Advanced Scientific Computing Research (2012)
5.
6.
Zurück zum Zitat Meyers, J., Geurts, B.J., Baelmans, M.: Database analysis of errors in large-eddy simulation. Phys. Fluids 15, 2740 (2003)CrossRefMATH Meyers, J., Geurts, B.J., Baelmans, M.: Database analysis of errors in large-eddy simulation. Phys. Fluids 15, 2740 (2003)CrossRefMATH
7.
Zurück zum Zitat Meldi, M., Lucor, D., Sagaut, P.: Is the Smagorinsky coefficient sensitive to uncertainty in the form of the energy spectrum? Phys. Fluids 23, 125,109 (2011)CrossRef Meldi, M., Lucor, D., Sagaut, P.: Is the Smagorinsky coefficient sensitive to uncertainty in the form of the energy spectrum? Phys. Fluids 23, 125,109 (2011)CrossRef
8.
Zurück zum Zitat Meyers, J., Sagaut, P.: Evaluation of Smagorinsky variants in large-eddy simulations of wall-resolved plane channel flows. Phys. Fluids 19, 095,105 (2007a)CrossRefMATH Meyers, J., Sagaut, P.: Evaluation of Smagorinsky variants in large-eddy simulations of wall-resolved plane channel flows. Phys. Fluids 19, 095,105 (2007a)CrossRefMATH
9.
Zurück zum Zitat Meyers, J., Sagaut, P.: Is plane-channel flow a friendly case for the testing of large-eddy simulation subgrid-scale models? Phys. Fluids 19, 048,105 (2007b)CrossRefMATH Meyers, J., Sagaut, P.: Is plane-channel flow a friendly case for the testing of large-eddy simulation subgrid-scale models? Phys. Fluids 19, 048,105 (2007b)CrossRefMATH
10.
Zurück zum Zitat Dunn, M.C., Shotorban, B., Frendi, A.: Uncertainty quantification of turbulence model coefficients via latin hypercube sampling method. J. Fluids. Eng. 133, 041,402 (2011)CrossRef Dunn, M.C., Shotorban, B., Frendi, A.: Uncertainty quantification of turbulence model coefficients via latin hypercube sampling method. J. Fluids. Eng. 133, 041,402 (2011)CrossRef
11.
Zurück zum Zitat Lucor, D., Meyers, J., Sagaut, P.: Sensitivity analysis of large-eddy simulations to subgrid-scale-model parametric uncertainty using polynomial chaos. J. Fluid. Mech. 585, 255–280 (2007)MathSciNetCrossRefMATH Lucor, D., Meyers, J., Sagaut, P.: Sensitivity analysis of large-eddy simulations to subgrid-scale-model parametric uncertainty using polynomial chaos. J. Fluid. Mech. 585, 255–280 (2007)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Cheung, S., Oliver, T., Prudencion, E., Pridhomme, S., Moser, R.: Bayesian uncertainty analysis with applications to turbulence modeling. Reliab. Eng. Syst. Saf. 96, 1137–1149 (2011)CrossRef Cheung, S., Oliver, T., Prudencion, E., Pridhomme, S., Moser, R.: Bayesian uncertainty analysis with applications to turbulence modeling. Reliab. Eng. Syst. Saf. 96, 1137–1149 (2011)CrossRef
13.
Zurück zum Zitat Völker, S., Moser, R., Venugopal, P.: Optimal large eddy simulation of turbulent channel flow based on direct numerical simulation statistical data. Phys. Fluids 14, 3675–3691 (2002)CrossRefMATH Völker, S., Moser, R., Venugopal, P.: Optimal large eddy simulation of turbulent channel flow based on direct numerical simulation statistical data. Phys. Fluids 14, 3675–3691 (2002)CrossRefMATH
14.
Zurück zum Zitat Phillips, N.A.: Models for weather prediction. Annu. Rev. Fluid. Mech. 2, 251–292 (1970)CrossRef Phillips, N.A.: Models for weather prediction. Annu. Rev. Fluid. Mech. 2, 251–292 (1970)CrossRef
15.
Zurück zum Zitat Leith, C.E.: Objective methods for weather prediction. Annu. Rev. Fluid. Mech. 10, 107–128 (1978)CrossRefMATH Leith, C.E.: Objective methods for weather prediction. Annu. Rev. Fluid. Mech. 10, 107–128 (1978)CrossRefMATH
16.
Zurück zum Zitat Gorlé, C., Iaccarino, G.: A framework for epistemic uncertainty quantification of turbulent scalar flux models for Reynolds-averaged Navier-Stokes simulations. Phys. Fluids 25, 055,105 (2013)CrossRef Gorlé, C., Iaccarino, G.: A framework for epistemic uncertainty quantification of turbulent scalar flux models for Reynolds-averaged Navier-Stokes simulations. Phys. Fluids 25, 055,105 (2013)CrossRef
17.
Zurück zum Zitat Emory, M., Larsson, J., Iaccarino, G.: Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures. Phys. Fluids 25, 110,822 (2013)CrossRef Emory, M., Larsson, J., Iaccarino, G.: Modeling of structural uncertainties in Reynolds-averaged Navier-Stokes closures. Phys. Fluids 25, 110,822 (2013)CrossRef
18.
Zurück zum Zitat Vasilyev, O.V., Lund, T.S., Moin, P.: A general class of commutative filters for LES in complex geometries. J. Comput. Phys. 146, 82–104 (1998)MathSciNetCrossRefMATH Vasilyev, O.V., Lund, T.S., Moin, P.: A general class of commutative filters for LES in complex geometries. J. Comput. Phys. 146, 82–104 (1998)MathSciNetCrossRefMATH
19.
Zurück zum Zitat Marsden, A.L., Vasilyev, O.V., Moin, P.: Construction of commutative filters for LES on unstructured meshes. J. Comput. Phys. 175, 584–603 (2002)CrossRefMATH Marsden, A.L., Vasilyev, O.V., Moin, P.: Construction of commutative filters for LES on unstructured meshes. J. Comput. Phys. 175, 584–603 (2002)CrossRefMATH
20.
Zurück zum Zitat Leonard, A.: Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. A 18, 237–248 (1974)CrossRef Leonard, A.: Energy cascade in large-eddy simulations of turbulent fluid flows. Adv. Geophys. A 18, 237–248 (1974)CrossRef
22.
Zurück zum Zitat Carati, D., Winckelmans, G.S., Jeanmart, H.: On the modelling of the subgrid-scale and filtered-scale stress tensors in alrge-eddy simulation. J. Fluid. Mech. 441, 119–138 (2001)CrossRefMATH Carati, D., Winckelmans, G.S., Jeanmart, H.: On the modelling of the subgrid-scale and filtered-scale stress tensors in alrge-eddy simulation. J. Fluid. Mech. 441, 119–138 (2001)CrossRefMATH
23.
Zurück zum Zitat Rogallo, R.S., Moin, P.: Numerical simulation of turbulent flow. Annu. Rev. Fluid. Mech. 16, 2150 (1984)CrossRefMATH Rogallo, R.S., Moin, P.: Numerical simulation of turbulent flow. Annu. Rev. Fluid. Mech. 16, 2150 (1984)CrossRefMATH
24.
Zurück zum Zitat Clark, R.A., Ferziger, J.H., Reynolds, W.C.: Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid. Mech. 91, 1–16 (1979)CrossRefMATH Clark, R.A., Ferziger, J.H., Reynolds, W.C.: Evaluation of subgrid-scale models using an accurately simulated turbulent flow. J. Fluid. Mech. 91, 1–16 (1979)CrossRefMATH
25.
Zurück zum Zitat Bardina, J., Ferziger, J.H., Reynolds, W.C.: Improved subgrid scale models for large eddy simulation. In: Proceeding of the AIAA 13th Fluid & Plasma Dynamics Conference, pp 1–10 (1980) Bardina, J., Ferziger, J.H., Reynolds, W.C.: Improved subgrid scale models for large eddy simulation. In: Proceeding of the AIAA 13th Fluid & Plasma Dynamics Conference, pp 1–10 (1980)
26.
Zurück zum Zitat Zang, Y., Street, R.L., Koseff, J.R.: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids. A 5, 3186–3195 (1993)CrossRefMATH Zang, Y., Street, R.L., Koseff, J.R.: A dynamic mixed subgrid-scale model and its application to turbulent recirculating flows. Phys. Fluids. A 5, 3186–3195 (1993)CrossRefMATH
27.
Zurück zum Zitat Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid. Mech. 32, 1–32 (2000)MathSciNetCrossRefMATH Meneveau, C., Katz, J.: Scale-invariance and turbulence models for large-eddy simulation. Annu. Rev. Fluid. Mech. 32, 1–32 (2000)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Smagorinsky, J.: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather. Rev. 91, 99–164 (1963)CrossRef Smagorinsky, J.: General circulation experiments with the primitive equations. I. The basic experiment. Mon. Weather. Rev. 91, 99–164 (1963)CrossRef
29.
Zurück zum Zitat Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids. A 3, 1760–1765 (1991)CrossRefMATH Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids. A 3, 1760–1765 (1991)CrossRefMATH
30.
Zurück zum Zitat Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient. Flow. Turbul. Combust. 62, 183–200 (1999)CrossRefMATH Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient. Flow. Turbul. Combust. 62, 183–200 (1999)CrossRefMATH
31.
Zurück zum Zitat Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23, 085,106 (2011)CrossRef Nicoud, F., Toda, H.B., Cabrit, O., Bose, S., Lee, J.: Using singular values to build a subgrid-scale model for large eddy simulations. Phys. Fluids 23, 085,106 (2011)CrossRef
32.
Zurück zum Zitat Rozema, W., Bae, H.J., Moin, P., Verstappen, R.: Minimum-dissipation models for large-eddy simulation. Phys. Fluids 27, 085,107 (2015)CrossRef Rozema, W., Bae, H.J., Moin, P., Verstappen, R.: Minimum-dissipation models for large-eddy simulation. Phys. Fluids 27, 085,107 (2015)CrossRef
33.
Zurück zum Zitat Jofre, L., Lehmkuhl, O., Ventosa, J., Trias, F.X., Oliva, A.: Conservation properties of unstructured finite-volume mesh schemes for the Navier-Stokes equations. Numer. Heat. Transfer, Part. B 65, 53–79 (2014)CrossRef Jofre, L., Lehmkuhl, O., Ventosa, J., Trias, F.X., Oliva, A.: Conservation properties of unstructured finite-volume mesh schemes for the Navier-Stokes equations. Numer. Heat. Transfer, Part. B 65, 53–79 (2014)CrossRef
34.
Zurück zum Zitat Yoshizawa, A.: Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Phys. Fluids 29, 2152–2164 (1986)CrossRefMATH Yoshizawa, A.: Statistical theory for compressible turbulent shear flows, with the application to subgrid modeling. Phys. Fluids 29, 2152–2164 (1986)CrossRefMATH
35.
Zurück zum Zitat Moin, P., Squires, K., Cabot, W., Lee, S.: A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids. A 3, 2746–2757 (1991)CrossRefMATH Moin, P., Squires, K., Cabot, W., Lee, S.: A dynamic subgrid-scale model for compressible turbulence and scalar transport. Phys. Fluids. A 3, 2746–2757 (1991)CrossRefMATH
36.
Zurück zum Zitat Schumann, U.: Realizability of Reynolds-stress turbulence models. Phys. Fluids 20, 721–725 (1977)CrossRefMATH Schumann, U.: Realizability of Reynolds-stress turbulence models. Phys. Fluids 20, 721–725 (1977)CrossRefMATH
37.
Zurück zum Zitat Vreman, B., Geurts, B., Kuerten, H.: Realizability conditions for the turbulent stress tensor in large-eddy simulation. J. Fluid. Mech. 278, 351–362 (1994)CrossRefMATH Vreman, B., Geurts, B., Kuerten, H.: Realizability conditions for the turbulent stress tensor in large-eddy simulation. J. Fluid. Mech. 278, 351–362 (1994)CrossRefMATH
39.
Zurück zum Zitat Choi, K.S., Lumley, J.L.: The return to isotropy of homogeneous turbulence. J. Fluid. Mech. 436, 59–84 (2001)CrossRefMATH Choi, K.S., Lumley, J.L.: The return to isotropy of homogeneous turbulence. J. Fluid. Mech. 436, 59–84 (2001)CrossRefMATH
40.
Zurück zum Zitat Banerjee, S., Krahl, R., Durst, F., Zenger, C.: Presentation of anisotropy properties of turbulence, invariants versus eigenvalues approaches. J. Turbul. 8, 1–27 (2007)MathSciNetCrossRefMATH Banerjee, S., Krahl, R., Durst, F., Zenger, C.: Presentation of anisotropy properties of turbulence, invariants versus eigenvalues approaches. J. Turbul. 8, 1–27 (2007)MathSciNetCrossRefMATH
41.
Zurück zum Zitat Kindlmann, G.: Superquadric tensor glyphs. In: Proceeding of the 6th Joint Eurographics-IEEE TCVG Conference, pp 147–154 (2004) Kindlmann, G.: Superquadric tensor glyphs. In: Proceeding of the 6th Joint Eurographics-IEEE TCVG Conference, pp 147–154 (2004)
43.
Zurück zum Zitat Stolz, S., Adams, A.: An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11, 1699–1701 (1999)CrossRefMATH Stolz, S., Adams, A.: An approximate deconvolution procedure for large-eddy simulation. Phys. Fluids 11, 1699–1701 (1999)CrossRefMATH
44.
Zurück zum Zitat Pope, S.B.: Turbulent Flows. Cambridge University Press (2000) Pope, S.B.: Turbulent Flows. Cambridge University Press (2000)
45.
Zurück zum Zitat Piomelli, U., Cabot, W., Moin, P., Lee, S.: Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids 3, 1766–1771 (1991)CrossRefMATH Piomelli, U., Cabot, W., Moin, P., Lee, S.: Subgrid-scale backscatter in turbulent and transitional flows. Phys. Fluids 3, 1766–1771 (1991)CrossRefMATH
47.
Zurück zum Zitat Lund, T.S., Ghosal, S., Moin, P.: Numerical experiments with highly variable eddy viscosity model. Eng. Appl. LES 162, 7–11 (1993) Lund, T.S., Ghosal, S., Moin, P.: Numerical experiments with highly variable eddy viscosity model. Eng. Appl. LES 162, 7–11 (1993)
49.
Zurück zum Zitat Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to R e τ = 590. Phys. Fluids 11, 943–945 (1999)CrossRefMATH Moser, R.D., Kim, J., Mansour, N.N.: Direct numerical simulation of turbulent channel flow up to R e τ = 590. Phys. Fluids 11, 943–945 (1999)CrossRefMATH
50.
Zurück zum Zitat Chapman, D., Kuhn, G.: The limiting behavior of turbulence near a wall. J. Fluid. Mech. 170, 265–292 (1986)CrossRefMATH Chapman, D., Kuhn, G.: The limiting behavior of turbulence near a wall. J. Fluid. Mech. 170, 265–292 (1986)CrossRefMATH
51.
Zurück zum Zitat Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes. Cambridge University Press (2007) Press, W.H., Teukolsky, S.A., Vetterling, W.T., Flannery, B.P.: Numerical Recipes. Cambridge University Press (2007)
52.
Zurück zum Zitat Gullbrand, J., Chow, F.K.: The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid. Mech. 495, 323–341 (2003)CrossRefMATH Gullbrand, J., Chow, F.K.: The effect of numerical errors and turbulence models in large-eddy simulations of channel flow, with and without explicit filtering. J. Fluid. Mech. 495, 323–341 (2003)CrossRefMATH
Metadaten
Titel
A Framework for Characterizing Structural Uncertainty in Large-Eddy Simulation Closures
verfasst von
Lluís Jofre
Stefan P. Domino
Gianluca Iaccarino
Publikationsdatum
10.08.2017
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 2/2018
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-017-9844-8

Weitere Artikel der Ausgabe 2/2018

Flow, Turbulence and Combustion 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.