Skip to main content
Erschienen in: Flow, Turbulence and Combustion 2/2018

07.08.2017

Selective Non-catalytic Reduction (SNCR) of Nitrogen Oxide Emissions: A Perspective from Numerical Modeling

verfasst von: Carlo Locci, Luc Vervisch, Benjamin Farcy, Pascale Domingo, Nicolas Perret

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The selective non-catalytic reduction (SNCR) process used to transform nitrogen monoxide molecules into environmentally friendly gases is reviewed with its numerical modeling. The fundamentals of SNCR in terms of chemistry and flow physics are first discussed, to then examine how they impact on the design and optimization of furnaces and incinerators relying on this technology. The various options in operation today are presented for coal-fired or waste-to-energy power plants, biomass and CO boilers. In complement, specific applications using additive components are discussed along with the amine reclaimer waste approach. The methodology and the challenges of computational fluid dynamics applied to SNCR systems are reviewed, before discussing emerging simulation techniques, as large eddy simulation (LES) of such complex systems. The modeling of the multicomponent evaporation of the liquid reagent injected for transforming NOx, as urea, and the modeling of the chemistry in the gaseous phase, are addressed for the numerical simulation of SNCR. Finally, reduced-order modeling of SNCR is discussed and perspectives are drawn for the control, in situ, of SNCR systems.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat De Soete, G.: Heterogenous N2O and NO formation from bound nitrogen atoms during coal char combustion. Symp. (Int.) Combust. 23(1), 1257–1264 (1991)CrossRef De Soete, G.: Heterogenous N2O and NO formation from bound nitrogen atoms during coal char combustion. Symp. (Int.) Combust. 23(1), 1257–1264 (1991)CrossRef
2.
Zurück zum Zitat De Soete, G.: Nitrous-oxide from combustion and industry - Chemistry, emissions and control. Revue de l’Institut Français du Pétrole 48(4), 413–451 (1993)MathSciNetCrossRef De Soete, G.: Nitrous-oxide from combustion and industry - Chemistry, emissions and control. Revue de l’Institut Français du Pétrole 48(4), 413–451 (1993)MathSciNetCrossRef
3.
Zurück zum Zitat Hill, S. C., Smoot, L. D.: Modeling of nitrogen oxides formation and destruction in combustion systems. Prog. Energy Combust. Sci. 26(4–6) (2000) Hill, S. C., Smoot, L. D.: Modeling of nitrogen oxides formation and destruction in combustion systems. Prog. Energy Combust. Sci. 26(4–6) (2000)
4.
Zurück zum Zitat De Soete, G.: Overall reaction rates of NO and N2 formation from fuel nitrogen. Symp. (Int.) Combust. 15(1), 1093–1102 (1975)CrossRef De Soete, G.: Overall reaction rates of NO and N2 formation from fuel nitrogen. Symp. (Int.) Combust. 15(1), 1093–1102 (1975)CrossRef
5.
Zurück zum Zitat Liang, J.: Chemical Modeling for Air Resources Fundamentals, Applications, and Corroborative Analysis. Elsevier (2013) Liang, J.: Chemical Modeling for Air Resources Fundamentals, Applications, and Corroborative Analysis. Elsevier (2013)
6.
Zurück zum Zitat Crutzen, P. J.: The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Ann. Rev. Earth Planet Sci. 7, 443–472 (1979)CrossRef Crutzen, P. J.: The role of NO and NO2 in the chemistry of the troposphere and stratosphere. Ann. Rev. Earth Planet Sci. 7, 443–472 (1979)CrossRef
7.
Zurück zum Zitat Skalska, K., Miller, J. S., Ledakowicz, S.: Trends in NOx abatement: A review. Sci. Total Environ. 408(19), 3976–3989 (2010)CrossRef Skalska, K., Miller, J. S., Ledakowicz, S.: Trends in NOx abatement: A review. Sci. Total Environ. 408(19), 3976–3989 (2010)CrossRef
8.
Zurück zum Zitat Ballester, J. M., Dopazo, C., Fueyo, N., Hernández, M., Vidal, P. J.: Investigation of low-NOx strategies for natural gas combustion. Fuel 76(5), 435–446 (1997)CrossRef Ballester, J. M., Dopazo, C., Fueyo, N., Hernández, M., Vidal, P. J.: Investigation of low-NOx strategies for natural gas combustion. Fuel 76(5), 435–446 (1997)CrossRef
9.
Zurück zum Zitat Barman, S., Philip, L.: Integrated system for the treatment of oxides of nitrogen from flue gases. Env. Sci. Tech. 40(3), 1035–1041 (2006)CrossRef Barman, S., Philip, L.: Integrated system for the treatment of oxides of nitrogen from flue gases. Env. Sci. Tech. 40(3), 1035–1041 (2006)CrossRef
10.
Zurück zum Zitat Gómez-Garcia, M. A., Pitchon, V., Kiennemann, A.: Pollution by nitrogen oxides: An approach to NOx abatement by using sorbing catalytic materials. Environ. Int. 31(3), 445–467 (2005)CrossRef Gómez-Garcia, M. A., Pitchon, V., Kiennemann, A.: Pollution by nitrogen oxides: An approach to NOx abatement by using sorbing catalytic materials. Environ. Int. 31(3), 445–467 (2005)CrossRef
11.
Zurück zum Zitat Nicolle, A., Cagnina, S., de Bruin, T.: First-principle based modeling of urea decomposition kinetics in aqueous solutions. Chem. Phys. Lett. 664, 149–153 (2016)CrossRef Nicolle, A., Cagnina, S., de Bruin, T.: First-principle based modeling of urea decomposition kinetics in aqueous solutions. Chem. Phys. Lett. 664, 149–153 (2016)CrossRef
12.
Zurück zum Zitat Rankovic, N., Nicolle, A., Berthout, D., DaCosta, P.: Multi-scale modeling study of barium nitrate reduction in NOx traps. Topics Cata. 56(1–8), 140–144 (2013)CrossRef Rankovic, N., Nicolle, A., Berthout, D., DaCosta, P.: Multi-scale modeling study of barium nitrate reduction in NOx traps. Topics Cata. 56(1–8), 140–144 (2013)CrossRef
13.
Zurück zum Zitat Elzey, S., Mubayi, A., Larsen, S. C., Grassian, V.H.: FTIR study of the selective catalytic reduction of NO2 with ammonia on nanocrystalline NaY and CuY. J. Molecular Catalysis A.: Chemical 285(1–2), 48–57 (2008)CrossRef Elzey, S., Mubayi, A., Larsen, S. C., Grassian, V.H.: FTIR study of the selective catalytic reduction of NO2 with ammonia on nanocrystalline NaY and CuY. J. Molecular Catalysis A.: Chemical 285(1–2), 48–57 (2008)CrossRef
14.
Zurück zum Zitat Javed, M. T., Irfan, N. T., Gibbs, B. M.: Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. J. Environ. Manag. 83(3), 251–289 (2007)CrossRef Javed, M. T., Irfan, N. T., Gibbs, B. M.: Control of combustion-generated nitrogen oxides by selective non-catalytic reduction. J. Environ. Manag. 83(3), 251–289 (2007)CrossRef
16.
Zurück zum Zitat Mok, Y. S., Koh, D. J., Kim, K. T., Nam, I. S.: Nonthermal plasma-enhanced catalytic removal of nitrogen oxides over V2O5/TiO2 and Cr2O3/ TiO2. Ind. Eng. Chem. Res. 42(13), 2960–2967 (2003)CrossRef Mok, Y. S., Koh, D. J., Kim, K. T., Nam, I. S.: Nonthermal plasma-enhanced catalytic removal of nitrogen oxides over V2O5/TiO2 and Cr2O3/ TiO2. Ind. Eng. Chem. Res. 42(13), 2960–2967 (2003)CrossRef
17.
Zurück zum Zitat Wang, Z., Zhou, J., Zhu, Y., Wen, Z., Liu, J., Cen, K.: Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results. Fuel Process. Tech. 88(8), 817–823 (2007)CrossRef Wang, Z., Zhou, J., Zhu, Y., Wen, Z., Liu, J., Cen, K.: Simultaneous removal of NOx, SO2 and Hg in nitrogen flow in a narrow reactor by ozone injection: Experimental results. Fuel Process. Tech. 88(8), 817–823 (2007)CrossRef
19.
Zurück zum Zitat Durme, J. V., Dewulf, J., Leys, C., Langenhove, H. V.: Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Appl. Cat. B: Environ. 78(3–4), 324–333 (2008)CrossRef Durme, J. V., Dewulf, J., Leys, C., Langenhove, H. V.: Combining non-thermal plasma with heterogeneous catalysis in waste gas treatment: A review. Appl. Cat. B: Environ. 78(3–4), 324–333 (2008)CrossRef
20.
Zurück zum Zitat Libby, P. A.: Introduction to Turbulence. Combustion Taylor & Francis (1996) Libby, P. A.: Introduction to Turbulence. Combustion Taylor & Francis (1996)
21.
Zurück zum Zitat Abe, K., Jang, Y. J., Leschziner, M. A.: An investigation of wall-anisotropy expressions and length-scale equations for non-linear eddy-viscosity models. Int. J. Heat Fluid Flow 24(2), 181–198 (2003)CrossRef Abe, K., Jang, Y. J., Leschziner, M. A.: An investigation of wall-anisotropy expressions and length-scale equations for non-linear eddy-viscosity models. Int. J. Heat Fluid Flow 24(2), 181–198 (2003)CrossRef
22.
Zurück zum Zitat Jones, W. P., Launder, B. E.: The prediction of laminarization with a two-equation model of turbulence. J. Heat Mass Transfer 15, 301–314 (1972)CrossRef Jones, W. P., Launder, B. E.: The prediction of laminarization with a two-equation model of turbulence. J. Heat Mass Transfer 15, 301–314 (1972)CrossRef
24.
Zurück zum Zitat Patel, V. C., Rodi, W., Scheuerer, G.: Turbulence models for near-wall and low reynolds number flows - a review. AIAA J. 23(9), 1308–1319 (1985)MathSciNetCrossRef Patel, V. C., Rodi, W., Scheuerer, G.: Turbulence models for near-wall and low reynolds number flows - a review. AIAA J. 23(9), 1308–1319 (1985)MathSciNetCrossRef
25.
Zurück zum Zitat Spalart, P.: Philosophies and fallacies in turbulence modeling. Progress Aerosp. Sci. 74, 1–15 (2015)CrossRef Spalart, P.: Philosophies and fallacies in turbulence modeling. Progress Aerosp. Sci. 74, 1–15 (2015)CrossRef
26.
Zurück zum Zitat Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A: Fluid Dyn. 3, 1760 (1991)MATHCrossRef Germano, M., Piomelli, U., Moin, P., Cabot, W.: A dynamic subgrid-scale eddy viscosity model. Phys. Fluids A: Fluid Dyn. 3, 1760 (1991)MATHCrossRef
27.
Zurück zum Zitat Lesieur, M., Métais, O., Comte, P.: Large-Eddy Simulations of Turbulence. Cambridge University Press, Cambridge (2005)MATHCrossRef Lesieur, M., Métais, O., Comte, P.: Large-Eddy Simulations of Turbulence. Cambridge University Press, Cambridge (2005)MATHCrossRef
28.
Zurück zum Zitat Moin, P.: Advances in Large Eddy simulation methodology for complex flows. Int. J. Heat Fluid Flow 23(6), 710–720 (2002)CrossRef Moin, P.: Advances in Large Eddy simulation methodology for complex flows. Int. J. Heat Fluid Flow 23(6), 710–720 (2002)CrossRef
29.
Zurück zum Zitat Piomelli, U.: Large-eddy simulation: Achievements and challenges. Prog. Aerosp. Sci. 35(4), 335–362 (1999)CrossRef Piomelli, U.: Large-eddy simulation: Achievements and challenges. Prog. Aerosp. Sci. 35(4), 335–362 (1999)CrossRef
30.
Zurück zum Zitat Sagaut, P.: Large Eddy Simulation for Incompressible Flows: an Introduction, 2nd edn. Springer, Berlin (2001)MATHCrossRef Sagaut, P.: Large Eddy Simulation for Incompressible Flows: an Introduction, 2nd edn. Springer, Berlin (2001)MATHCrossRef
31.
Zurück zum Zitat Smagorinsky, J.: General circulation experiments with the primitives equations. Mon. Weather Rev. 61(3), 99–164 (1963)CrossRef Smagorinsky, J.: General circulation experiments with the primitives equations. Mon. Weather Rev. 61(3), 99–164 (1963)CrossRef
32.
Zurück zum Zitat Tabor, G. R., Baha-Ahmadi, M. H.: Inlet conditions for large eddy simulation: A review. Comput. Fluids 39(4), 553–567 (2010)MathSciNetMATHCrossRef Tabor, G. R., Baha-Ahmadi, M. H.: Inlet conditions for large eddy simulation: A review. Comput. Fluids 39(4), 553–567 (2010)MathSciNetMATHCrossRef
33.
Zurück zum Zitat Bose, S. T., Moin, P.: A dynamic slip boundary condition for wall-modeled large-eddy simulation. Phys. Fluids 26(015), 104 (2014) Bose, S. T., Moin, P.: A dynamic slip boundary condition for wall-modeled large-eddy simulation. Phys. Fluids 26(015), 104 (2014)
34.
Zurück zum Zitat Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3), 183–200 (1999)MATHCrossRef Nicoud, F., Ducros, F.: Subgrid-scale stress modelling based on the square of the velocity gradient tensor. Flow Turbul. Combust. 62(3), 183–200 (1999)MATHCrossRef
35.
Zurück zum Zitat Park, G. I., Moin, P.: Numerical aspects and implementation of a two-layer zonal wall model for LES of compressible turbulent flows on unstructured meshes. J. Comput. Phys., 305 (2016) Park, G. I., Moin, P.: Numerical aspects and implementation of a two-layer zonal wall model for LES of compressible turbulent flows on unstructured meshes. J. Comput. Phys., 305 (2016)
36.
Zurück zum Zitat Piomelli, U.: Wall-layer models for large-eddy simulations. Progress Aerosp. Sci. 44(6), 437–446 (2008)CrossRef Piomelli, U.: Wall-layer models for large-eddy simulations. Progress Aerosp. Sci. 44(6), 437–446 (2008)CrossRef
37.
Zurück zum Zitat Wang, M., Moin, P.: Dynamic wall modeling for large-eddy simulation of complex turbulent flows. Phys. Fluids 14(7), 1070–6631 (2002)MathSciNetMATH Wang, M., Moin, P.: Dynamic wall modeling for large-eddy simulation of complex turbulent flows. Phys. Fluids 14(7), 1070–6631 (2002)MathSciNetMATH
38.
Zurück zum Zitat Klippenstein, S. J., Harding, L. B., Glarborg, P., Miller, J. A.: The role of NNH in NO formation and control. Combust. Flame 158, 774–789 (2011)CrossRef Klippenstein, S. J., Harding, L. B., Glarborg, P., Miller, J. A.: The role of NNH in NO formation and control. Combust. Flame 158, 774–789 (2011)CrossRef
39.
Zurück zum Zitat Andrews, D. G. R., Gray, P.: Combustion of NH3 supported by oxygen, nitrous oxide or nitric oxide: Laminar flame propagation at low pressure in binary mixtures. Combust. Flame 8(2), 113–126 (1964)CrossRef Andrews, D. G. R., Gray, P.: Combustion of NH3 supported by oxygen, nitrous oxide or nitric oxide: Laminar flame propagation at low pressure in binary mixtures. Combust. Flame 8(2), 113–126 (1964)CrossRef
40.
Zurück zum Zitat Fenimore, C. P., Kelso, J. R.: The NH3 induced decomposition of Nitric Oxide. J. American Chem. Soc. 74, 1593–1594 (1952)CrossRef Fenimore, C. P., Kelso, J. R.: The NH3 induced decomposition of Nitric Oxide. J. American Chem. Soc. 74, 1593–1594 (1952)CrossRef
41.
Zurück zum Zitat Poole, D. R., Graven, W. M.: Kinetics of the reaction of NH3 and nitric oxide in the region of spontaneous ignition. J. American Chem. Soc. 83, 283–286 (1961)CrossRef Poole, D. R., Graven, W. M.: Kinetics of the reaction of NH3 and nitric oxide in the region of spontaneous ignition. J. American Chem. Soc. 83, 283–286 (1961)CrossRef
42.
Zurück zum Zitat Wise, H., Frech, M. F.: Kinetics of oxidation of nh3 by nitric oxide. J. Chem. Phys. 22, 1463–1464 (1954)CrossRef Wise, H., Frech, M. F.: Kinetics of oxidation of nh3 by nitric oxide. J. Chem. Phys. 22, 1463–1464 (1954)CrossRef
43.
Zurück zum Zitat Wolfhard, H. G., Strasser, A.: Spontaneous ignition of fuel-nitric oxide mixtures. J. Chem. Phys. 28, 172–173 (1958)CrossRef Wolfhard, H. G., Strasser, A.: Spontaneous ignition of fuel-nitric oxide mixtures. J. Chem. Phys. 28, 172–173 (1958)CrossRef
44.
Zurück zum Zitat Wolhard, H. G., Parker, W. G.: Spectra and combustion mechanism of flames supported by the oxides of nitrogen. Symp. (Int.) Combust. 50(1), 718–728 (1954) Wolhard, H. G., Parker, W. G.: Spectra and combustion mechanism of flames supported by the oxides of nitrogen. Symp. (Int.) Combust. 50(1), 718–728 (1954)
45.
Zurück zum Zitat Wendt, J. O. L., Sternling, C. V., Matovich, M. A.: Reduction of sulphur trioxide and nitrogen oxides by secondary fuel injection. Symp. (Int.) Combust. 14(1), 897–904 (1973)CrossRef Wendt, J. O. L., Sternling, C. V., Matovich, M. A.: Reduction of sulphur trioxide and nitrogen oxides by secondary fuel injection. Symp. (Int.) Combust. 14(1), 897–904 (1973)CrossRef
46.
Zurück zum Zitat Lyon, R. K., Cole, J. A.: A reexamination of the RapreNOx process. Combust. Flame 82(3–4), 435–443 (1990)CrossRef Lyon, R. K., Cole, J. A.: A reexamination of the RapreNOx process. Combust. Flame 82(3–4), 435–443 (1990)CrossRef
47.
Zurück zum Zitat Lyon, R. K., Benn, D.: Kinetics of the NO-NH3-O2 Reaction. Symp. (Int.) Combust. 17(1), 601–610 (1979)CrossRef Lyon, R. K., Benn, D.: Kinetics of the NO-NH3-O2 Reaction. Symp. (Int.) Combust. 17(1), 601–610 (1979)CrossRef
48.
Zurück zum Zitat Salimian, S., Hanson, R. K.: A kinetic study of NO removal from combustion gases by injection of NHi-containing compounds. Combust. Sci. Tech. 23(5–6), 225–230 (1980)CrossRef Salimian, S., Hanson, R. K.: A kinetic study of NO removal from combustion gases by injection of NHi-containing compounds. Combust. Sci. Tech. 23(5–6), 225–230 (1980)CrossRef
50.
Zurück zum Zitat Farcy, B., Abou-Taouk, A., Vervisch, L., Domingo, P., Perret, N.: Two approaches of chemistry downsizing for simulating selective non catalytic reduction DeNOx process. Fuel 118, 291–299 (2014)CrossRef Farcy, B., Abou-Taouk, A., Vervisch, L., Domingo, P., Perret, N.: Two approaches of chemistry downsizing for simulating selective non catalytic reduction DeNOx process. Fuel 118, 291–299 (2014)CrossRef
51.
Zurück zum Zitat Hardman, R., Cox, J., Cremer, M., Eddings, E., Muzio, L., Martz, T., Stallings, J.: Evaluation of SNCR performance on large coal-fired utility boilers. In: ICAC Forum on Cutting NOx Emissions, pp. 1–21. Institute of Clean Air Companies (ICAC), Reaction Engineering International (1998) Hardman, R., Cox, J., Cremer, M., Eddings, E., Muzio, L., Martz, T., Stallings, J.: Evaluation of SNCR performance on large coal-fired utility boilers. In: ICAC Forum on Cutting NOx Emissions, pp. 1–21. Institute of Clean Air Companies (ICAC), Reaction Engineering International (1998)
52.
Zurück zum Zitat Fiore, A., Gavasci, R., Lombardi, F., Sarantuyaa, Z.: Removal of nitrogen oxides producing during waste incineration: Operation of a full scale DeNOx system. In: Gavasci, R., Zandaryaa, S. (eds.) First International Conference on Environmental Engineering and Renewable Energy, pp 187–196. Elsevier Science, Kidlington (1998)CrossRef Fiore, A., Gavasci, R., Lombardi, F., Sarantuyaa, Z.: Removal of nitrogen oxides producing during waste incineration: Operation of a full scale DeNOx system. In: Gavasci, R., Zandaryaa, S. (eds.) First International Conference on Environmental Engineering and Renewable Energy, pp 187–196. Elsevier Science, Kidlington (1998)CrossRef
53.
Zurück zum Zitat Zandaryaa, S., Gavasci, R., Lombardi, F., Fiore, A.: Nitrogen oxides from waste incineration: Control by selective non-catalytic reduction. Chemosphere 42(5–7), 491–497 (2001)CrossRef Zandaryaa, S., Gavasci, R., Lombardi, F., Fiore, A.: Nitrogen oxides from waste incineration: Control by selective non-catalytic reduction. Chemosphere 42(5–7), 491–497 (2001)CrossRef
55.
Zurück zum Zitat Lv, Y., Wang, Z., Zhou, J., Cen, K.: Full-scale numerical investigation of a selective noncatalytic reduction (SNCR) system in a 100 mw utility boiler with complex chemistry and decoupling approach. Energy Fuels 24(10), 5432–5440 (2010)CrossRef Lv, Y., Wang, Z., Zhou, J., Cen, K.: Full-scale numerical investigation of a selective noncatalytic reduction (SNCR) system in a 100 mw utility boiler with complex chemistry and decoupling approach. Energy Fuels 24(10), 5432–5440 (2010)CrossRef
56.
Zurück zum Zitat Han, X., Wei, X., Schnell, U., Hein, K. R. G.: Detailed modeling of hybrid reburn/SNCR processes for NOx reduction in coal-fired furnaces. Combust. Flame 132(3), 374–386 (2003)CrossRef Han, X., Wei, X., Schnell, U., Hein, K. R. G.: Detailed modeling of hybrid reburn/SNCR processes for NOx reduction in coal-fired furnaces. Combust. Flame 132(3), 374–386 (2003)CrossRef
57.
Zurück zum Zitat Modliński, N.: Numerical simulation of SNCR (selective non-catalytic reduction) process in coal fired grate boiler. Energy 92(1), 67–76 (2015)CrossRef Modliński, N.: Numerical simulation of SNCR (selective non-catalytic reduction) process in coal fired grate boiler. Energy 92(1), 67–76 (2015)CrossRef
58.
Zurück zum Zitat Rand, T., Haukohl, J., Marxen, U.: Municipal solid waste incineration. Tech. Rep. 462 World Bank Technical Paper (2000) Rand, T., Haukohl, J., Marxen, U.: Municipal solid waste incineration. Tech. Rep. 462 World Bank Technical Paper (2000)
59.
Zurück zum Zitat Nguyen, T. D. B., Kang, T. H., Lim, Y.I., Eom, W.H., Kim, S.J., Yoo, K.S.: Application of urea-based SNCR, to a municipal incinerator: On-site test and CFD simulation. Chem. Eng. J. 152(1), 36–43 (2009)CrossRef Nguyen, T. D. B., Kang, T. H., Lim, Y.I., Eom, W.H., Kim, S.J., Yoo, K.S.: Application of urea-based SNCR, to a municipal incinerator: On-site test and CFD simulation. Chem. Eng. J. 152(1), 36–43 (2009)CrossRef
60.
Zurück zum Zitat Liang, Z., Xiaoqian, M.: Mathematical modeling of MSW combustion and SNCR in a full-scale municipal incinerator and effects of grate speed and oxygen-enriched atmospheres on operating conditions. Waste Manag. 30(12), 2520–2529 (2010)CrossRef Liang, Z., Xiaoqian, M.: Mathematical modeling of MSW combustion and SNCR in a full-scale municipal incinerator and effects of grate speed and oxygen-enriched atmospheres on operating conditions. Waste Manag. 30(12), 2520–2529 (2010)CrossRef
61.
Zurück zum Zitat Kim, H. S., Shin, M. S., Jang, D. S., Ohm, T. I.: Numerical study of SNCR application to a full-scale stoker incinerator at Daejon 4th industrial complex. Appl. Thermal Eng. 24(14–15), 2117–2129 (2004)CrossRef Kim, H. S., Shin, M. S., Jang, D. S., Ohm, T. I.: Numerical study of SNCR application to a full-scale stoker incinerator at Daejon 4th industrial complex. Appl. Thermal Eng. 24(14–15), 2117–2129 (2004)CrossRef
62.
Zurück zum Zitat Møller, J., Munk, B., Crillesen, K., Christensen, T.H.: Life cycle assessment of selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waster incinerator. Waste Manag. 31(6), 1184–1193 (2011)CrossRef Møller, J., Munk, B., Crillesen, K., Christensen, T.H.: Life cycle assessment of selective non-catalytic reduction (SNCR) of nitrous oxides in a full-scale municipal solid waster incinerator. Waste Manag. 31(6), 1184–1193 (2011)CrossRef
63.
Zurück zum Zitat Xia, Z., Li, J., Tingting, W., Chen, C., Zhang, X.: CFD simulation of MSW combustion and SNCR in a commercial incinerator. Waste Manag. 34(9), 1609–1618 (2014)CrossRef Xia, Z., Li, J., Tingting, W., Chen, C., Zhang, X.: CFD simulation of MSW combustion and SNCR in a commercial incinerator. Waste Manag. 34(9), 1609–1618 (2014)CrossRef
64.
Zurück zum Zitat Mahmoudi, S., Baeyens, J., Seville, J.P.K.: NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass. Biomass Bioenergy 34(9), 1393–1409 (2010)CrossRef Mahmoudi, S., Baeyens, J., Seville, J.P.K.: NOx formation and selective non-catalytic reduction (SNCR) in a fluidized bed combustor of biomass. Biomass Bioenergy 34(9), 1393–1409 (2010)CrossRef
65.
Zurück zum Zitat Cao, Q., Wu, S., Lui, H., Liu, D., Qiu, P.: Experimental and modeling study of the effects of multicomponent gas additives on selective non-catalytic reduction process. Chemosphere 76(9), 1199–1205 (2009)CrossRef Cao, Q., Wu, S., Lui, H., Liu, D., Qiu, P.: Experimental and modeling study of the effects of multicomponent gas additives on selective non-catalytic reduction process. Chemosphere 76(9), 1199–1205 (2009)CrossRef
66.
Zurück zum Zitat Gasnot, L., Dao, D. Q., Pauwels, J. F.: Experimental and kinetic study of the effect of additives on the ammonia based SNCR process in low temperature conditions. Energy Fuels 26(5), 2837–2849 (2012)CrossRef Gasnot, L., Dao, D. Q., Pauwels, J. F.: Experimental and kinetic study of the effect of additives on the ammonia based SNCR process in low temperature conditions. Energy Fuels 26(5), 2837–2849 (2012)CrossRef
67.
Zurück zum Zitat Javed, M. T., Nimmo, W., Gibbs, B. M.: Experimental and modeling study of the effect of CO and H2 on the urea DeNOx process in a 150 kW laboratory reactor. Chemosphere 70(6), 1059–1067 (2008)CrossRef Javed, M. T., Nimmo, W., Gibbs, B. M.: Experimental and modeling study of the effect of CO and H2 on the urea DeNOx process in a 150 kW laboratory reactor. Chemosphere 70(6), 1059–1067 (2008)CrossRef
68.
Zurück zum Zitat Javed, M. T., Nimmo, W., Mahmood, A., Irfan, N.: Effect of oxygenated liquid additives on the urea based SNCR process. J. Env. Manag. 90(11), 3429–3435 (2009)CrossRef Javed, M. T., Nimmo, W., Mahmood, A., Irfan, N.: Effect of oxygenated liquid additives on the urea based SNCR process. J. Env. Manag. 90(11), 3429–3435 (2009)CrossRef
69.
Zurück zum Zitat Bae, S. W., Rho, S. A., Kim, S.D.: NO removal by reducing agents and additives in the selective non-catalytic reduction (SNCR) process. Chemosphere 65 (1), 170–175 (2006)CrossRef Bae, S. W., Rho, S. A., Kim, S.D.: NO removal by reducing agents and additives in the selective non-catalytic reduction (SNCR) process. Chemosphere 65 (1), 170–175 (2006)CrossRef
70.
Zurück zum Zitat Leckner, B., Karlsson, M., Dam-Johansen, K., Wenell, C. E., Kilpinen, P., Hupa, M.: Influence of additives on selective non-catalytic reduction of NO with NH3 in circulating fluidized bed boilers. Ind. Eng. Chem. Res. 30(11), 2396–2404 (1991)CrossRef Leckner, B., Karlsson, M., Dam-Johansen, K., Wenell, C. E., Kilpinen, P., Hupa, M.: Influence of additives on selective non-catalytic reduction of NO with NH3 in circulating fluidized bed boilers. Ind. Eng. Chem. Res. 30(11), 2396–2404 (1991)CrossRef
71.
Zurück zum Zitat Niu, S., Han, K., Lu, C.: An experimental study on the effect of operating parameters and sodium additive on the NOxOUT process. Process. Safety Environ. Protec. 89(2), 121–126 (2011)CrossRef Niu, S., Han, K., Lu, C.: An experimental study on the effect of operating parameters and sodium additive on the NOxOUT process. Process. Safety Environ. Protec. 89(2), 121–126 (2011)CrossRef
72.
Zurück zum Zitat Zamansky, V. M., Lissianski, V. V., Maly, P. M., Ho, L., Ruslib, D.: Reactions of sodium species in the promoted sncr process. Combust. Flame 117(4), 821–831 (1999)CrossRef Zamansky, V. M., Lissianski, V. V., Maly, P. M., Ho, L., Ruslib, D.: Reactions of sodium species in the promoted sncr process. Combust. Flame 117(4), 821–831 (1999)CrossRef
73.
Zurück zum Zitat Li, S., Wei, X.: Behavior of alkali metal hydroxides/chlorides for NO reduction in a biomass reburning process. Energy Fuels 25(8), 3465–3475 (2011)CrossRef Li, S., Wei, X.: Behavior of alkali metal hydroxides/chlorides for NO reduction in a biomass reburning process. Energy Fuels 25(8), 3465–3475 (2011)CrossRef
74.
Zurück zum Zitat Li, T., Yuqun, Z., Chen, C., Xuchang, X.: Effect of CaO on NH3 + NO + O2 reaction system in the absence and presence of high concentration CO2. Asia-Pac. J. Chem. Eng. 5(2), 287–293 (2010)CrossRef Li, T., Yuqun, Z., Chen, C., Xuchang, X.: Effect of CaO on NH3 + NO + O2 reaction system in the absence and presence of high concentration CO2. Asia-Pac. J. Chem. Eng. 5(2), 287–293 (2010)CrossRef
75.
Zurück zum Zitat Li, T., Zhuo, Y., Zhao, Y., Xu, X.: Effect of sulfated CaO on NO reduction by NH3 in the presence of excess oxygen. Energy Fuels 23(4), 2025–2030 (2009)CrossRef Li, T., Zhuo, Y., Zhao, Y., Xu, X.: Effect of sulfated CaO on NO reduction by NH3 in the presence of excess oxygen. Energy Fuels 23(4), 2025–2030 (2009)CrossRef
76.
Zurück zum Zitat Lissianski, V. V., Maly, P. M., Zamansky, V. M.: Utilization of iron additives for advanced control of NOx emissions from stationary combustion sources. Ind. Eng. Chem. Res. 40(15), 3287–3293 (2001)CrossRef Lissianski, V. V., Maly, P. M., Zamansky, V. M.: Utilization of iron additives for advanced control of NOx emissions from stationary combustion sources. Ind. Eng. Chem. Res. 40(15), 3287–3293 (2001)CrossRef
77.
Zurück zum Zitat Lissianski, V. V., Zamansky, V. M., Maly, P. M.: Effect of metal-containing additives on NOx reduction in combustion and reburning. Combust. Flame 125(3), 1118–1127 (2001)CrossRef Lissianski, V. V., Zamansky, V. M., Maly, P. M.: Effect of metal-containing additives on NOx reduction in combustion and reburning. Combust. Flame 125(3), 1118–1127 (2001)CrossRef
78.
Zurück zum Zitat Koukouzas, N., Ketikidis, C., Itskos, G.: Heavy metal characterization of CFB derived coal fly ash. Fuel Process. Tech. 92(3), 441–446 (2011)CrossRef Koukouzas, N., Ketikidis, C., Itskos, G.: Heavy metal characterization of CFB derived coal fly ash. Fuel Process. Tech. 92(3), 441–446 (2011)CrossRef
79.
Zurück zum Zitat Qiu, P., Huang, H., Zhang, J., Liu, L., Chen, Y.: Catalytic effects of main metals in coal ash on advanced reburning of pulverized coal. Energy Fuels 24(9), 4919–4924 (2010)CrossRef Qiu, P., Huang, H., Zhang, J., Liu, L., Chen, Y.: Catalytic effects of main metals in coal ash on advanced reburning of pulverized coal. Energy Fuels 24(9), 4919–4924 (2010)CrossRef
80.
Zurück zum Zitat Hao, J., Yu, W., Lu, P., Zhang, Y., Zhu, X.: The effects of Na/K additives and flyash on NO reduction in a SNCR process. Chemosphere 122, 213–218 (2015)CrossRef Hao, J., Yu, W., Lu, P., Zhang, Y., Zhu, X.: The effects of Na/K additives and flyash on NO reduction in a SNCR process. Chemosphere 122, 213–218 (2015)CrossRef
82.
Zurück zum Zitat Botheju, D., Glarborg, P., Tokheim, L.A.: NO,x reduction using amine reclaimer wastes (ARW) generated in post combustion CO2 capture. Int. J. Greenhouse Gas Control 10, 33–45 (2012)CrossRef Botheju, D., Glarborg, P., Tokheim, L.A.: NO,x reduction using amine reclaimer wastes (ARW) generated in post combustion CO2 capture. Int. J. Greenhouse Gas Control 10, 33–45 (2012)CrossRef
83.
Zurück zum Zitat Botheju, D., Glarborg, P., Tokheim, L. A.: The use of amine reclaimer wastes as a NOx reduction agent. Energy Procedia 37, 691–700 (2013)CrossRef Botheju, D., Glarborg, P., Tokheim, L. A.: The use of amine reclaimer wastes as a NOx reduction agent. Energy Procedia 37, 691–700 (2013)CrossRef
84.
Zurück zum Zitat Fu, S. I., Song, Q., Yao, Q.: Study on the catalysis of CaCO3 in the SNCR deNOx process for cement kilns. Chem. Eng. J. 262(15), 9–17 (2015)CrossRef Fu, S. I., Song, Q., Yao, Q.: Study on the catalysis of CaCO3 in the SNCR deNOx process for cement kilns. Chem. Eng. J. 262(15), 9–17 (2015)CrossRef
85.
Zurück zum Zitat Lv, Y., Wang, Z., Zhou, J., Cen, K.: Development and validation of a reduced mechanism for urea-based SNCR process based on QSS graph. Energy Fuels 23(7), 3605–3611 (2009)CrossRef Lv, Y., Wang, Z., Zhou, J., Cen, K.: Development and validation of a reduced mechanism for urea-based SNCR process based on QSS graph. Energy Fuels 23(7), 3605–3611 (2009)CrossRef
86.
Zurück zum Zitat Rota, R., Dorota, A., Zanoelo, E. F., Morbidelli, M.: Experimental and modeling analysis of the NOxOUT process. Chem. Eng. Sci. 57(1), 27–38 (2002)CrossRef Rota, R., Dorota, A., Zanoelo, E. F., Morbidelli, M.: Experimental and modeling analysis of the NOxOUT process. Chem. Eng. Sci. 57(1), 27–38 (2002)CrossRef
87.
Zurück zum Zitat Brouwer, J., Heap, M., Pershing, D., Smith, P.: A model for prediction of selective noncatalytic reduction of nitrogen oxides by ammonia, urea, and cyanuric acid with mixing limitations in the presence of CO. Symp. (Int.) Combust. 26(2) (1996) Brouwer, J., Heap, M., Pershing, D., Smith, P.: A model for prediction of selective noncatalytic reduction of nitrogen oxides by ammonia, urea, and cyanuric acid with mixing limitations in the presence of CO. Symp. (Int.) Combust. 26(2) (1996)
88.
Zurück zum Zitat Shin, M. S., Kim, H. S., Jang, D. S.: Numerical study on the SNCR application of space-limited industrial boiler. Appl. Thermal Eng. 27(17–18), 2850–2857 (2007)CrossRef Shin, M. S., Kim, H. S., Jang, D. S.: Numerical study on the SNCR application of space-limited industrial boiler. Appl. Thermal Eng. 27(17–18), 2850–2857 (2007)CrossRef
89.
Zurück zum Zitat Zhou, W., Marquez, A., Moyeda, D., Nareddy, S., Frato, J., Yu, G., Knarvik, S., Frøseth, V.: Design and test of a selective noncatalytic reduction (SNCR) system for full-scale refinery CO boilers to achieve high-NOx removal. Energy Fuels 24(7), 3936–3941 (2010)CrossRef Zhou, W., Marquez, A., Moyeda, D., Nareddy, S., Frato, J., Yu, G., Knarvik, S., Frøseth, V.: Design and test of a selective noncatalytic reduction (SNCR) system for full-scale refinery CO boilers to achieve high-NOx removal. Energy Fuels 24(7), 3936–3941 (2010)CrossRef
90.
Zurück zum Zitat Zhou, W., Moyeda, D., Nguyen, Q., Payne, R.: Comprehensive process design study for layered-NOx-control in a tangentially coal fired boiler. AIChE J. 56 (3), 825–832 (2010) Zhou, W., Moyeda, D., Nguyen, Q., Payne, R.: Comprehensive process design study for layered-NOx-control in a tangentially coal fired boiler. AIChE J. 56 (3), 825–832 (2010)
91.
Zurück zum Zitat Zhou, W., Moyeda, D., Payne, R., Berg, M.: Application of numerical simulation and full scale testing for modeling low NOx burner emissions. Combust. Theory Model. 13(6), 1053–1070 (2009)MATHCrossRef Zhou, W., Moyeda, D., Payne, R., Berg, M.: Application of numerical simulation and full scale testing for modeling low NOx burner emissions. Combust. Theory Model. 13(6), 1053–1070 (2009)MATHCrossRef
92.
Zurück zum Zitat Miller, J., Bowman, C.: Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 15(4), 287–338 (1989)CrossRef Miller, J., Bowman, C.: Mechanism and modeling of nitrogen chemistry in combustion. Prog. Energy Combust. Sci. 15(4), 287–338 (1989)CrossRef
93.
Zurück zum Zitat Miller, J., Glarborg, P.: Modeling the formation of N2O and NO2 in the thermal DeNOx process. Int. J. Chem. Kinet. 26(4), 421–436 (1996) Miller, J., Glarborg, P.: Modeling the formation of N2O and NO2 in the thermal DeNOx process. Int. J. Chem. Kinet. 26(4), 421–436 (1996)
94.
Zurück zum Zitat Miller, J., Glarborg, P.: Modeling the thermal De-NOx process: Closing in on a final solution. Int. J. Chem. Kinet. 31(11), 757–765 (1999)CrossRef Miller, J., Glarborg, P.: Modeling the thermal De-NOx process: Closing in on a final solution. Int. J. Chem. Kinet. 31(11), 757–765 (1999)CrossRef
95.
Zurück zum Zitat Kilpinen, J., Hupa, M., Aho, M., Hämäläinen, J.: Selective non-catalytic NOx reduction at elevated pressures: Studies on the risk of increased N2O emissions. In: Wieser, P. (ed.) 7th International Workshop on Nitrous Oxide Emissions. Bergische Universität Gesamthochschule Wuppertal, Cologne (1997) Kilpinen, J., Hupa, M., Aho, M., Hämäläinen, J.: Selective non-catalytic NOx reduction at elevated pressures: Studies on the risk of increased N2O emissions. In: Wieser, P. (ed.) 7th International Workshop on Nitrous Oxide Emissions. Bergische Universität Gesamthochschule Wuppertal, Cologne (1997)
96.
Zurück zum Zitat Skreiberg, O., Kilpinen, P., Glarborg, P.: Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor. Combust. Flame 136(4), 501–518 (2004)CrossRef Skreiberg, O., Kilpinen, P., Glarborg, P.: Ammonia chemistry below 1400 K under fuel-rich conditions in a flow reactor. Combust. Flame 136(4), 501–518 (2004)CrossRef
97.
Zurück zum Zitat Coda-Zabetta, E., Hupa, M.: A detailed kinetic mechanism including methanol and nitrogen pollutants relevant to the gas-phase combustion and pyrolysis of biomass-derived fuels. Combust. Flame 152(1–2), 14–27 (2008)CrossRef Coda-Zabetta, E., Hupa, M.: A detailed kinetic mechanism including methanol and nitrogen pollutants relevant to the gas-phase combustion and pyrolysis of biomass-derived fuels. Combust. Flame 152(1–2), 14–27 (2008)CrossRef
98.
Zurück zum Zitat Farcy, B., Vervisch, L., Domingo, P.: Large eddy simulation of selective non-catalytic reduction (SNCR): A downsizing procedure for simulating nitric-oxide reduction units. Chem. Eng. Sci. 139, 285–303 (2016)CrossRef Farcy, B., Vervisch, L., Domingo, P.: Large eddy simulation of selective non-catalytic reduction (SNCR): A downsizing procedure for simulating nitric-oxide reduction units. Chem. Eng. Sci. 139, 285–303 (2016)CrossRef
99.
Zurück zum Zitat Farcy, B., Vervisch, L., Domingo, P., Perret, N.: Reduced-order modeling for the control of selective non-catalytic reduction (SNCR). AIChE J. 62(3), 928–938 (2016)CrossRef Farcy, B., Vervisch, L., Domingo, P., Perret, N.: Reduced-order modeling for the control of selective non-catalytic reduction (SNCR). AIChE J. 62(3), 928–938 (2016)CrossRef
100.
Zurück zum Zitat Aoki, H., Fujiwara, T., Morozumi, Y., Miura, T.: Measurement of urea thermal decomposition reaction rate for NO selective non-catalytic reduction. In: Fifth International Conference on Technologies and Combustion for a Clean Environment, vol. 1, pp. 115–118. Lisbon (1999) Aoki, H., Fujiwara, T., Morozumi, Y., Miura, T.: Measurement of urea thermal decomposition reaction rate for NO selective non-catalytic reduction. In: Fifth International Conference on Technologies and Combustion for a Clean Environment, vol. 1, pp. 115–118. Lisbon (1999)
101.
Zurück zum Zitat Jensen, A., Johnsson, J. E., Andries, J., Laughlin, K., Read, G., Mayer, M., Baumann, H., Bonn, B.: Formation and reduction of NOx in pressurized fluidized bed combustion of coal. Fuel 74(11), 1555–1569 (1995)CrossRef Jensen, A., Johnsson, J. E., Andries, J., Laughlin, K., Read, G., Mayer, M., Baumann, H., Bonn, B.: Formation and reduction of NOx in pressurized fluidized bed combustion of coal. Fuel 74(11), 1555–1569 (1995)CrossRef
102.
Zurück zum Zitat Mitchell, J. W., Tarbell, J. M.: A kinetic model of nitric oxide formation during pulverized coal combustion. AIChE J. 28(2), 302–311 (1982)CrossRef Mitchell, J. W., Tarbell, J. M.: A kinetic model of nitric oxide formation during pulverized coal combustion. AIChE J. 28(2), 302–311 (1982)CrossRef
103.
Zurück zum Zitat Nguyen, T. D., Lim, Y., Kim, S., Eom, W., Yoo, K.: Experiment and computational fluid dynamics (CFD) simulation of urea-based selective non-catalytic reduction (SNCR) in a pilot-scale flow reactor. Energy Fuels 22(6), 3864–3876 (2008)CrossRef Nguyen, T. D., Lim, Y., Kim, S., Eom, W., Yoo, K.: Experiment and computational fluid dynamics (CFD) simulation of urea-based selective non-catalytic reduction (SNCR) in a pilot-scale flow reactor. Energy Fuels 22(6), 3864–3876 (2008)CrossRef
104.
Zurück zum Zitat Burstrom, P. E., Lundstrom, T. S., Marjavaara, B. D., Toyra, S.: CFD, modelling of selective non-catalytic reduction of NOx in grate-kiln plants. Prog. Comput. Fluid Dyn. Int. 10(5–6), 284–291 (2009)MATH Burstrom, P. E., Lundstrom, T. S., Marjavaara, B. D., Toyra, S.: CFD, modelling of selective non-catalytic reduction of NOx in grate-kiln plants. Prog. Comput. Fluid Dyn. Int. 10(5–6), 284–291 (2009)MATH
105.
Zurück zum Zitat Caton, J. A., Siebers, D. L.: Comparison of nitric oxide removal by cynauric acid and by ammonia. Combust. Sci. Tech. 65(4–6), 277–293 (1989)CrossRef Caton, J. A., Siebers, D. L.: Comparison of nitric oxide removal by cynauric acid and by ammonia. Combust. Sci. Tech. 65(4–6), 277–293 (1989)CrossRef
106.
Zurück zum Zitat Zanoelo, E. F.: A lumped model for thermal decomposition of urea. uncertainties analysis and selective non-catalytic reduction of NO. Chem. Eng. Sci. 64(5), 1075–1084 (2009)CrossRef Zanoelo, E. F.: A lumped model for thermal decomposition of urea. uncertainties analysis and selective non-catalytic reduction of NO. Chem. Eng. Sci. 64(5), 1075–1084 (2009)CrossRef
107.
Zurück zum Zitat Rota, R., Zanoelo, E. F., Antos, D., Morbidelli, M., Carra, S.: Analysis of thermal DeNOx process at high partial pressure of reactants. Chem. Eng. Sci. 55 (6), 1041–1051 (2000)CrossRef Rota, R., Zanoelo, E. F., Antos, D., Morbidelli, M., Carra, S.: Analysis of thermal DeNOx process at high partial pressure of reactants. Chem. Eng. Sci. 55 (6), 1041–1051 (2000)CrossRef
108.
Zurück zum Zitat Glarborg, P., Kristensen, P. G., Jensen, S. H., Dam-Johansen, K.: A flow reactor study of HNCO oxidation chemistry. Combust. Flame 98(3), 241–258 (1994)CrossRef Glarborg, P., Kristensen, P. G., Jensen, S. H., Dam-Johansen, K.: A flow reactor study of HNCO oxidation chemistry. Combust. Flame 98(3), 241–258 (1994)CrossRef
109.
Zurück zum Zitat Kasuya, F., Glarborg, P., Johnsson, J. E., Dam-Johansen, K.: The thermal DeNOx process influence of partial pressures and temperature. Chem. Eng. Sci. 50 (9), 1455–1466 (1995)CrossRef Kasuya, F., Glarborg, P., Johnsson, J. E., Dam-Johansen, K.: The thermal DeNOx process influence of partial pressures and temperature. Chem. Eng. Sci. 50 (9), 1455–1466 (1995)CrossRef
110.
Zurück zum Zitat Vilas, E., Skifter, U., Jensen, A. D., López, C., Maier, J., Glarborg, P.: Experimental and modeling study of biomass reburning. Energy Fuels 18(5), 1442–1450 (2004)CrossRef Vilas, E., Skifter, U., Jensen, A. D., López, C., Maier, J., Glarborg, P.: Experimental and modeling study of biomass reburning. Energy Fuels 18(5), 1442–1450 (2004)CrossRef
111.
Zurück zum Zitat Alzueta, M. U., Bilbao, R., Millera, A., Oliva, M., Ibañez, J. C.: Interactions between nitric oxide and urea under flow reactor conditions. Energy Fuels 12(5), 1001–1007 (1998)CrossRef Alzueta, M. U., Bilbao, R., Millera, A., Oliva, M., Ibañez, J. C.: Interactions between nitric oxide and urea under flow reactor conditions. Energy Fuels 12(5), 1001–1007 (1998)CrossRef
112.
Zurück zum Zitat Jødal, M., Nielsen, C., Hulgaard, T., Dam-Johansen, K.: Pilot scale experiments with ammonia and urea as reductants in selective non-catalytic reduction of nitric oxide. Symp. (Int.) Combust. 23(1), 237--243 (1991)CrossRef Jødal, M., Nielsen, C., Hulgaard, T., Dam-Johansen, K.: Pilot scale experiments with ammonia and urea as reductants in selective non-catalytic reduction of nitric oxide. Symp. (Int.) Combust. 23(1), 237--243 (1991)CrossRef
113.
Zurück zum Zitat Lee, J. B., Kim, S. D.: Kinetics of NOx reduction by urea solution in a pilot scale reactor. J. Chem. Eng. Japan 29(4), 620–626 (1996)CrossRef Lee, J. B., Kim, S. D.: Kinetics of NOx reduction by urea solution in a pilot scale reactor. J. Chem. Eng. Japan 29(4), 620–626 (1996)CrossRef
114.
Zurück zum Zitat Jones, W. P., Lindstedt, R. P.: Global reaction schemes for hydrocarbon combustion. Combust. Flame 73, 233–249 (1988)CrossRef Jones, W. P., Lindstedt, R. P.: Global reaction schemes for hydrocarbon combustion. Combust. Flame 73, 233–249 (1988)CrossRef
115.
Zurück zum Zitat Westbrook, C. K.: Dryer: Chemical kinetic modeling of hydrocarbon combustion. Progress Energy Combust. Sci. 10(1), 1–57 (1984)MathSciNetCrossRef Westbrook, C. K.: Dryer: Chemical kinetic modeling of hydrocarbon combustion. Progress Energy Combust. Sci. 10(1), 1–57 (1984)MathSciNetCrossRef
116.
Zurück zum Zitat Peters, N.: Systematic reduction of flame kinetics: Principles and details. In: Kulh, A. L., Bowen, J. R., Leyer, J. C., Boris, A. (eds.) Dynamics of Reactive Systems, vol. 113, pp 67–86. AIAA, Washington, DC (1988) Peters, N.: Systematic reduction of flame kinetics: Principles and details. In: Kulh, A. L., Bowen, J. R., Leyer, J. C., Boris, A. (eds.) Dynamics of Reactive Systems, vol. 113, pp 67–86. AIAA, Washington, DC (1988)
117.
Zurück zum Zitat Polifke, W., Geng, W., Döbbeling, K.: Optimization of rate coefficients for simplified reaction mechanisms with genetic algorithms. Combust. Flame 113(1–2), 119–134 (1998)CrossRef Polifke, W., Geng, W., Döbbeling, K.: Optimization of rate coefficients for simplified reaction mechanisms with genetic algorithms. Combust. Flame 113(1–2), 119–134 (1998)CrossRef
118.
Zurück zum Zitat Sikalo, N., Hasemann, O., Schulz, C., Kempf, A., Wlokas, I.: A genetic algorithm-based method for the automatic reduction of reaction mechanisms. Int. J. Chem. Kinetics 46(1), 41–59 (2013)CrossRef Sikalo, N., Hasemann, O., Schulz, C., Kempf, A., Wlokas, I.: A genetic algorithm-based method for the automatic reduction of reaction mechanisms. Int. J. Chem. Kinetics 46(1), 41–59 (2013)CrossRef
119.
Zurück zum Zitat Tham, Y. F., Bisetti, F., Chen, J. Y.: Development of a highly reduced mechanism for iso-octane HCCI combustion with targeted search algorithm. J. Eng. Gas Turb. Power 130(4), 042–804 (2008)CrossRef Tham, Y. F., Bisetti, F., Chen, J. Y.: Development of a highly reduced mechanism for iso-octane HCCI combustion with targeted search algorithm. J. Eng. Gas Turb. Power 130(4), 042–804 (2008)CrossRef
120.
Zurück zum Zitat Abou-Taouk, A., Farcy, B., Domingo, P., Vervisch, L., Sadasivuni, S., Ericsson, L. E.: Optimized reduced chemistry and molecular transport for large eddy simulation of partially premixed combustion in a gas turbine. Combust. Sci. Tech. 188 (1), 21–39 (2016)CrossRef Abou-Taouk, A., Farcy, B., Domingo, P., Vervisch, L., Sadasivuni, S., Ericsson, L. E.: Optimized reduced chemistry and molecular transport for large eddy simulation of partially premixed combustion in a gas turbine. Combust. Sci. Tech. 188 (1), 21–39 (2016)CrossRef
121.
Zurück zum Zitat Lu, T., Law, C. K.: A directed relation graph method for mechanism reduction. Proc. Combust. Inst. 30(1), 1333–1341 (2005)CrossRef Lu, T., Law, C. K.: A directed relation graph method for mechanism reduction. Proc. Combust. Inst. 30(1), 1333–1341 (2005)CrossRef
122.
Zurück zum Zitat Pepiot, P., Pitsch, H.: An efficient error propagation based reduction method for large chemical kinetic mechanisms. Combust. Flame 154(1–2), 67–81 (2008)MATH Pepiot, P., Pitsch, H.: An efficient error propagation based reduction method for large chemical kinetic mechanisms. Combust. Flame 154(1–2), 67–81 (2008)MATH
123.
Zurück zum Zitat Jaouen, N., Vervisch, L., Domingo, P., Ribert, G.: Automatic reduction and optimisation of chemistry for turbulent combustion modeling: Impact of the canonical problem. Combust. Flame 175, 60–79 (2017)CrossRef Jaouen, N., Vervisch, L., Domingo, P., Ribert, G.: Automatic reduction and optimisation of chemistry for turbulent combustion modeling: Impact of the canonical problem. Combust. Flame 175, 60–79 (2017)CrossRef
124.
Zurück zum Zitat Jones, W. P., Rigopoulos, S., Smith, S., Maas, U.: Reduction of comprehensive chemistry via constraint potentials. Proc. Combust. Inst. 30(1), 1325–1331 (2003)CrossRef Jones, W. P., Rigopoulos, S., Smith, S., Maas, U.: Reduction of comprehensive chemistry via constraint potentials. Proc. Combust. Inst. 30(1), 1325–1331 (2003)CrossRef
125.
Zurück zum Zitat Lam, S. H., Goussis, D. A.: The CSP method for simplifying kinetics. Int. J. Chem. Kinet. 26(4), 461–486 (1994)CrossRef Lam, S. H., Goussis, D. A.: The CSP method for simplifying kinetics. Int. J. Chem. Kinet. 26(4), 461–486 (1994)CrossRef
126.
Zurück zum Zitat Bykov, V., Maas, U.: The extension of the ILDM concept to reaction-diffusion manifolds. Combust. Theory Model. 11(6), 839–862 (2007)MATHCrossRef Bykov, V., Maas, U.: The extension of the ILDM concept to reaction-diffusion manifolds. Combust. Theory Model. 11(6), 839–862 (2007)MATHCrossRef
127.
Zurück zum Zitat Hasse, C., Peters, N.: A two mixture fraction flamelet model applied to split injections in a DI diesel engine. Proc. Combust. Inst 30, 2755–2762 (2005)CrossRef Hasse, C., Peters, N.: A two mixture fraction flamelet model applied to split injections in a DI diesel engine. Proc. Combust. Inst 30, 2755–2762 (2005)CrossRef
128.
Zurück zum Zitat Nguyen, P. D., Vervisch, L., Subramanian, V., Domingo, P.: Multidimensional flamelet-generated manifolds for partially premixed combustion. Combust. Flame 157 (1), 43–61 (2010)CrossRef Nguyen, P. D., Vervisch, L., Subramanian, V., Domingo, P.: Multidimensional flamelet-generated manifolds for partially premixed combustion. Combust. Flame 157 (1), 43–61 (2010)CrossRef
129.
Zurück zum Zitat van Oijen, J. A., Lammers, F. A., de Goey, L. P. H.: Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 127 (3), 2124–2134 (2001)CrossRef van Oijen, J. A., Lammers, F. A., de Goey, L. P. H.: Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 127 (3), 2124–2134 (2001)CrossRef
130.
Zurück zum Zitat Nguyen, T. D. B., Lim, Y. I., Eom, W. H., Kim, S. J., Yoo, K. S.: Experiment and CFD simulation of hybrid SNCR-SCR using urea solution in a pilot-scale reactor. Comput. Chem. Eng. 34(10), 1580–1589 (2010)CrossRef Nguyen, T. D. B., Lim, Y. I., Eom, W. H., Kim, S. J., Yoo, K. S.: Experiment and CFD simulation of hybrid SNCR-SCR using urea solution in a pilot-scale reactor. Comput. Chem. Eng. 34(10), 1580–1589 (2010)CrossRef
131.
Zurück zum Zitat Elghobashi, S., Truesdell, G.: Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech. 242, 655–700 (1992)CrossRef Elghobashi, S., Truesdell, G.: Direct simulation of particle dispersion in a decaying isotropic turbulence. J. Fluid Mech. 242, 655–700 (1992)CrossRef
132.
Zurück zum Zitat Spalding, D. B.: The combustion of liquid fuels. Symp. (Int.) Combust. 4(1), 847–864 (1953)CrossRef Spalding, D. B.: The combustion of liquid fuels. Symp. (Int.) Combust. 4(1), 847–864 (1953)CrossRef
133.
Zurück zum Zitat Abramzon, B., Sirignano, W. A.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transfer 32(9), 1605–1618 (1989)CrossRef Abramzon, B., Sirignano, W. A.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transfer 32(9), 1605–1618 (1989)CrossRef
134.
Zurück zum Zitat Kuo, K. K.: Principles of Combustion. Wiley, New York (1986) Kuo, K. K.: Principles of Combustion. Wiley, New York (1986)
135.
Zurück zum Zitat Sirignano, W. A.: Fluid Dynamics and Transport of Droplets and Sprays. Cambridge University Press, Cambridge (1999)CrossRef Sirignano, W. A.: Fluid Dynamics and Transport of Droplets and Sprays. Cambridge University Press, Cambridge (1999)CrossRef
136.
Zurück zum Zitat Sirignano, W. A.: Advances in droplet array combustion theory and modeling. Progress Energy Combust. Sci. 42, 54–86 (2014)CrossRef Sirignano, W. A.: Advances in droplet array combustion theory and modeling. Progress Energy Combust. Sci. 42, 54–86 (2014)CrossRef
137.
Zurück zum Zitat Wang, T. J., Baek, S. W., Lee, S. Y., Kang, D. H., Yeo, G. K.: Experimental investigation on evaporation of urea-water-solution droplet for SCR applications. AIChE J. 55, 3267–3276 (2009)CrossRef Wang, T. J., Baek, S. W., Lee, S. Y., Kang, D. H., Yeo, G. K.: Experimental investigation on evaporation of urea-water-solution droplet for SCR applications. AIChE J. 55, 3267–3276 (2009)CrossRef
138.
Zurück zum Zitat Maqua, C., Castanet, G., Lemoine, F.: Bicomponent droplets evaporation: Temperature measurements and modelling. Fuel 87(13), 2932–2942 (2008)CrossRef Maqua, C., Castanet, G., Lemoine, F.: Bicomponent droplets evaporation: Temperature measurements and modelling. Fuel 87(13), 2932–2942 (2008)CrossRef
139.
Zurück zum Zitat Sazhin, S. S., Elwardany, A., Krutitskii, P. A., Castanet, G., Lemoine, F., Sazhina, E. M., Heikal, M. R.: A simplified model for bi-component droplet heating and evaporation. Int. J. Heat Mass Transf. 53(21), 4495–4505 (2010)MATHCrossRef Sazhin, S. S., Elwardany, A., Krutitskii, P. A., Castanet, G., Lemoine, F., Sazhina, E. M., Heikal, M. R.: A simplified model for bi-component droplet heating and evaporation. Int. J. Heat Mass Transf. 53(21), 4495–4505 (2010)MATHCrossRef
140.
Zurück zum Zitat Abramzon, B., Sirignano, W. A.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transfer 32(9), 1605–1618 (1989)CrossRef Abramzon, B., Sirignano, W. A.: Droplet vaporization model for spray combustion calculations. Int. J. Heat Mass Transfer 32(9), 1605–1618 (1989)CrossRef
141.
Zurück zum Zitat Ranz, W., Marshall, W.: Evaporation from drops. Chem. Eng. Prog. 48(3), 141–146 (1952) Ranz, W., Marshall, W.: Evaporation from drops. Chem. Eng. Prog. 48(3), 141–146 (1952)
142.
Zurück zum Zitat Hubbard, G., Denny, V., Mills, A.: Droplet evaporation: Effects of transients and variable properties. Int. J. Heat Mass Transfer 18(9), 1003–1008 (1975)CrossRef Hubbard, G., Denny, V., Mills, A.: Droplet evaporation: Effects of transients and variable properties. Int. J. Heat Mass Transfer 18(9), 1003–1008 (1975)CrossRef
143.
Zurück zum Zitat Locci, C., Vervisch, L.: Eulerian scalar projection in lagrangian point source context: An approximate inverse filtering approach. Flow Turb. Combust. 97(1), 363–368 (2016)CrossRef Locci, C., Vervisch, L.: Eulerian scalar projection in lagrangian point source context: An approximate inverse filtering approach. Flow Turb. Combust. 97(1), 363–368 (2016)CrossRef
144.
Zurück zum Zitat Ma, L., Roekaerts, D.: Numerical study of the multi-flame structure in spray combustion. Proc. Combust. Inst. 36(2), 2603–2613 (2017)CrossRef Ma, L., Roekaerts, D.: Numerical study of the multi-flame structure in spray combustion. Proc. Combust. Inst. 36(2), 2603–2613 (2017)CrossRef
145.
Zurück zum Zitat Ström, H., Lundstrom, A., Andersson, B.: Choice of urea-spray models in CFD simulations of urea-SCR systems. Chem. Eng. J. 150(1), 69–82 (2009)CrossRef Ström, H., Lundstrom, A., Andersson, B.: Choice of urea-spray models in CFD simulations of urea-SCR systems. Chem. Eng. J. 150(1), 69–82 (2009)CrossRef
Metadaten
Titel
Selective Non-catalytic Reduction (SNCR) of Nitrogen Oxide Emissions: A Perspective from Numerical Modeling
verfasst von
Carlo Locci
Luc Vervisch
Benjamin Farcy
Pascale Domingo
Nicolas Perret
Publikationsdatum
07.08.2017
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 2/2018
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-017-9842-x

Weitere Artikel der Ausgabe 2/2018

Flow, Turbulence and Combustion 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.