Skip to main content
Erschienen in: Flow, Turbulence and Combustion 2/2018

11.09.2017

3D Numerical Simulation of a Laminar Experimental SWQ Burner with Tabulated Chemistry

verfasst von: A. Heinrich, S. Ganter, G. Kuenne, C. Jainski, A. Dreizler, J. Janicka

Erschienen in: Flow, Turbulence and Combustion | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Flame-wall interaction (FWI) plays an important role in enclosed combustion systems. For avoiding the complexity of close to reality combustors, in this study an atmospheric premixed V-shaped flame interacting with an isothermal cold wall in a side wall quenching (SWQ) configuration is investigated. A stoichiometric methane/air mixture is used as fuel. A three-dimensional (3D) numerical simulation, which resolves all flow structures is combined with a tabulated chemistry approach (flamelet generated manifold, FGM). Results are compared with experimental data and two-dimensional simulations. The FGM approach is a suitable trade-off between computationally expensive detailed chemistry simulations and over simplified single step mechanisms. 2D simulations are used to investigate the influence of the uncertainty of the wall temperature, to show that the resolution in 3D is sufficient and that the influence of the flame thickening on the wall heat fluxes can be determined. Our results show that the 3D FGM approach is in close agreement to experimentally obtained flow and temperature fields. The dimensionless wall heat flux and Péclet number matches the expected values of 0.16 and 7, respectively. However, during FWI the measured CO mole fractions are not reproduced accurately showing that the transported variables in the present approach of tabulated chemistry do not recover premixed flame structures near walls.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat BP, Statistical review of world energy (2016) BP, Statistical review of world energy (2016)
2.
Zurück zum Zitat Alkidas, A.: Combustion-chamber crevices: the major source of engine-out hydrocarbon emissions under fully warmed conditions. Progress Energy Combust. Sci. 25, 253–273 (1999)CrossRef Alkidas, A.: Combustion-chamber crevices: the major source of engine-out hydrocarbon emissions under fully warmed conditions. Progress Energy Combust. Sci. 25, 253–273 (1999)CrossRef
3.
Zurück zum Zitat Dreizler, A., Boehm, B.: Advanced laser diagnostics for an improved understanding of premixed flame-wall interactions. Proc. Combust. Inst. 35, 37–64 (2015)CrossRef Dreizler, A., Boehm, B.: Advanced laser diagnostics for an improved understanding of premixed flame-wall interactions. Proc. Combust. Inst. 35, 37–64 (2015)CrossRef
4.
Zurück zum Zitat Cheng, R., Bill, R., Robben, F.: Eighteenth symposium (international) on combustion experimental study of combustion in a turbulent boundary layer. Symp. (Int.) Combust. 18(1), 1021–1029 (1981)CrossRef Cheng, R., Bill, R., Robben, F.: Eighteenth symposium (international) on combustion experimental study of combustion in a turbulent boundary layer. Symp. (Int.) Combust. 18(1), 1021–1029 (1981)CrossRef
5.
Zurück zum Zitat Gruber, A., Sankaran, R., Hawkes, E.R., Chen, J.H.: Turbulent flame–wall interaction: a direct numerical simulation study. J. Fluid Mech. 658, 5–32 (2010)CrossRefMATH Gruber, A., Sankaran, R., Hawkes, E.R., Chen, J.H.: Turbulent flame–wall interaction: a direct numerical simulation study. J. Fluid Mech. 658, 5–32 (2010)CrossRefMATH
6.
Zurück zum Zitat Saffman, M.: Parametric studies of a side wall quench layer. Combust. Flame 55(2), 141–159 (1984)CrossRef Saffman, M.: Parametric studies of a side wall quench layer. Combust. Flame 55(2), 141–159 (1984)CrossRef
7.
Zurück zum Zitat Ezekoye, O., Greif, R., Sawyer, R.: Twenty-fourth symposium on combustion increased surface temperature effects on wall heat transfer during unsteady flame quenching. Symp. (Int.) Combust. 24(1), 1465–1472 (1992)CrossRef Ezekoye, O., Greif, R., Sawyer, R.: Twenty-fourth symposium on combustion increased surface temperature effects on wall heat transfer during unsteady flame quenching. Symp. (Int.) Combust. 24(1), 1465–1472 (1992)CrossRef
8.
Zurück zum Zitat Lu, J., Ezekoye, O., Greif, R., Sawyer, R.: Twenty-third symposium (international) on combustion unsteady heat transfer during side wall quenching of a laminar flame. Symp. (Int.) Combust. 23(1), 441–446 (1991)CrossRef Lu, J., Ezekoye, O., Greif, R., Sawyer, R.: Twenty-third symposium (international) on combustion unsteady heat transfer during side wall quenching of a laminar flame. Symp. (Int.) Combust. 23(1), 441–446 (1991)CrossRef
9.
Zurück zum Zitat Bellenoue, M., Kageyama, T., Labuda, S., Sotton, J.: Direct measurement of laminar flame quenching distance in a closed vessel. Exp. Therm Fluid Sci. 27(3), 323–331 (2003)CrossRef Bellenoue, M., Kageyama, T., Labuda, S., Sotton, J.: Direct measurement of laminar flame quenching distance in a closed vessel. Exp. Therm Fluid Sci. 27(3), 323–331 (2003)CrossRef
10.
Zurück zum Zitat Boust, B., Sotton, J., Labuda, S., Bellenoue, M.: A thermal formulation for single-wall quenching of transient laminar flames. Combust. Flame 149(3), 286–294 (2007)CrossRef Boust, B., Sotton, J., Labuda, S., Bellenoue, M.: A thermal formulation for single-wall quenching of transient laminar flames. Combust. Flame 149(3), 286–294 (2007)CrossRef
11.
Zurück zum Zitat Alshaalan, T.M., Rutland, C.J.: Twenty-seventh sysposium (international) on combustion volume one turbulence, scalar transport, and reaction rates in flame-wall interaction. Symp. (Int.) Combust. 27(1), 793–799 (1998)CrossRef Alshaalan, T.M., Rutland, C.J.: Twenty-seventh sysposium (international) on combustion volume one turbulence, scalar transport, and reaction rates in flame-wall interaction. Symp. (Int.) Combust. 27(1), 793–799 (1998)CrossRef
12.
Zurück zum Zitat Van Oijen, J.A., De Goey, L.P.H.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161(1), 113–137 (2000)CrossRef Van Oijen, J.A., De Goey, L.P.H.: Modelling of premixed laminar flames using flamelet-generated manifolds. Combust. Sci. Technol. 161(1), 113–137 (2000)CrossRef
13.
Zurück zum Zitat Gicquel, O., Darabiha, N., Thévenin, D.: Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28(2), 1901–1908 (2000)CrossRef Gicquel, O., Darabiha, N., Thévenin, D.: Liminar premixed hydrogen/air counterflow flame simulations using flame prolongation of ILDM with differential diffusion. Proc. Combust. Inst. 28(2), 1901–1908 (2000)CrossRef
14.
Zurück zum Zitat Fiorina, B., Baron, R., Gicquel, O., Thevenin, D., Carpentier, S., Darabiha, N.: Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM. Combust. Theory Modell. 7(3), 449–470 (2003)CrossRef Fiorina, B., Baron, R., Gicquel, O., Thevenin, D., Carpentier, S., Darabiha, N.: Modelling non-adiabatic partially premixed flames using flame-prolongation of ILDM. Combust. Theory Modell. 7(3), 449–470 (2003)CrossRef
15.
Zurück zum Zitat Ribert, G., Champion, M., Gicquel, O., Darabiha, N., Veynante, D.: Modeling nonadiabatic turbulent premixed reactive flows including tabulated chemistry. Combust. Flame 141(3), 271–280 (2005)CrossRef Ribert, G., Champion, M., Gicquel, O., Darabiha, N., Veynante, D.: Modeling nonadiabatic turbulent premixed reactive flows including tabulated chemistry. Combust. Flame 141(3), 271–280 (2005)CrossRef
16.
Zurück zum Zitat Van Oijen, J., Lammers, F., De Goey, L.: Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 127(3), 2124–2134 (2001)CrossRef Van Oijen, J., Lammers, F., De Goey, L.: Modeling of complex premixed burner systems by using flamelet-generated manifolds. Combust. Flame 127(3), 2124–2134 (2001)CrossRef
17.
Zurück zum Zitat Ketelheun, A., Kuenne, G., Janicka, J.: Heat transfer modeling in the context of large eddy simulation of premixed combustion with tabulated chemistry. Flow Turbul. Combust. 91, 867–893 (2013)CrossRef Ketelheun, A., Kuenne, G., Janicka, J.: Heat transfer modeling in the context of large eddy simulation of premixed combustion with tabulated chemistry. Flow Turbul. Combust. 91, 867–893 (2013)CrossRef
18.
Zurück zum Zitat Jainski, C.: Experimentelle Untersuchung der turbulenten Flamme-Wand-Interaktion. PhD thesis, TU Darmstadt, Darmstadt (2016) Jainski, C.: Experimentelle Untersuchung der turbulenten Flamme-Wand-Interaktion. PhD thesis, TU Darmstadt, Darmstadt (2016)
19.
Zurück zum Zitat Jainski, C., Rißmann, M., Böhm, B., Janicka, J., Dreizler, A.: Sidewall quenching of atmospheric laminar premixed flames studied by laser-based diagnostics. Combust. Flame 183, 271–282 (2017)CrossRef Jainski, C., Rißmann, M., Böhm, B., Janicka, J., Dreizler, A.: Sidewall quenching of atmospheric laminar premixed flames studied by laser-based diagnostics. Combust. Flame 183, 271–282 (2017)CrossRef
20.
Zurück zum Zitat Jainski, C., Rißmann, M., Böhm, B., Dreizler, A.: Experimental investigation of flame surface density and mean reaction rate during flame–wall interaction, Proceedings of the Combustion Institute (2016) Jainski, C., Rißmann, M., Böhm, B., Dreizler, A.: Experimental investigation of flame surface density and mean reaction rate during flame–wall interaction, Proceedings of the Combustion Institute (2016)
21.
Zurück zum Zitat Mann, M., Jainski, C., Euler, M., Böhm, B., Dreizler, A.: Transient flame–wall interactions: Experimental analysis using spectroscopic temperature and co concentration measurements. Combust. Flame 161(9), 2371–2386 (2014)CrossRef Mann, M., Jainski, C., Euler, M., Böhm, B., Dreizler, A.: Transient flame–wall interactions: Experimental analysis using spectroscopic temperature and co concentration measurements. Combust. Flame 161(9), 2371–2386 (2014)CrossRef
22.
Zurück zum Zitat Hahn, F., Olbricht, C., Janicka, J.: Study of various configurations under variable density mixing conditions aiming on gas turbine combustion using les, vol. 0. ASME Turbo Expo, Berlin (2008)CrossRef Hahn, F., Olbricht, C., Janicka, J.: Study of various configurations under variable density mixing conditions aiming on gas turbine combustion using les, vol. 0. ASME Turbo Expo, Berlin (2008)CrossRef
23.
Zurück zum Zitat Kuenne, G., Seffrin, F., Fuest, F., Stahler, T., Ketelheun, A., Geyer, D., Janicka, J., Dreizler, A.: Experimental and numerical analysis of a lean premixed stratified burner using 1d Raman/Rayleigh scattering and large eddy simulation. Combust. Flame 159, 2669–2689 (2012)CrossRef Kuenne, G., Seffrin, F., Fuest, F., Stahler, T., Ketelheun, A., Geyer, D., Janicka, J., Dreizler, A.: Experimental and numerical analysis of a lean premixed stratified burner using 1d Raman/Rayleigh scattering and large eddy simulation. Combust. Flame 159, 2669–2689 (2012)CrossRef
24.
Zurück zum Zitat Wegner, B., Maltsev, A., Schneider, C., Sadiki, A., Dreizler, A., Janicka, J.: Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments. Int. J. Heat Fluid Flow 25(3), 528–536 (2004). Turbulence and Shear Flow Phenomena (TSFP-3)CrossRef Wegner, B., Maltsev, A., Schneider, C., Sadiki, A., Dreizler, A., Janicka, J.: Assessment of unsteady RANS in predicting swirl flow instability based on LES and experiments. Int. J. Heat Fluid Flow 25(3), 528–536 (2004). Turbulence and Shear Flow Phenomena (TSFP-3)CrossRef
25.
Zurück zum Zitat Zhou, G., Davidson, L., Olsson, E.: Transonic inviscid/turbulent airfoil flow simulations using a pressure based method with high order schemes, pp. 372–378. Springer Berlin Heidelberg, Berlin (1995)MATH Zhou, G., Davidson, L., Olsson, E.: Transonic inviscid/turbulent airfoil flow simulations using a pressure based method with high order schemes, pp. 372–378. Springer Berlin Heidelberg, Berlin (1995)MATH
26.
Zurück zum Zitat Ketelheun, A., Olbricht, C., Hahn, F., Janicka, J.: Premixed generated manifolds for the computation of technical combustion systems. In: Proceedings of ASME Turbo Expo 2009, Orlando, Florida, USA, p. 11 (2009) Ketelheun, A., Olbricht, C., Hahn, F., Janicka, J.: Premixed generated manifolds for the computation of technical combustion systems. In: Proceedings of ASME Turbo Expo 2009, Orlando, Florida, USA, p. 11 (2009)
29.
Zurück zum Zitat Kuenne, G., Ketelheun, A., Janicka, J.: LES modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry. Combust. Flame 158(9), 1750–1767 (2011)CrossRef Kuenne, G., Ketelheun, A., Janicka, J.: LES modeling of premixed combustion using a thickened flame approach coupled with FGM tabulated chemistry. Combust. Flame 158(9), 1750–1767 (2011)CrossRef
30.
Zurück zum Zitat Butler, T., O’Rourke, P.: A numerical method for two dimensional unsteady reacting flows. Symp. Int. Combust. 16(1), 1503–1515 (1977)CrossRef Butler, T., O’Rourke, P.: A numerical method for two dimensional unsteady reacting flows. Symp. Int. Combust. 16(1), 1503–1515 (1977)CrossRef
31.
Zurück zum Zitat Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12(7), 1843–1863 (2000)CrossRefMATH Colin, O., Ducros, F., Veynante, D., Poinsot, T.: A thickened flame model for large eddy simulations of turbulent premixed combustion. Phys. Fluids 12(7), 1843–1863 (2000)CrossRefMATH
32.
Zurück zum Zitat Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 679–698 (1986)CrossRef Canny, J.: A computational approach to edge detection. IEEE Trans. Pattern Anal. Mach. Intell. PAMI-8, 679–698 (1986)CrossRef
33.
Zurück zum Zitat Poinsot, T., Veynante, D.: Theoretical and numerical combustion, Second Edition. R.T. Edwards, Inc., 2 ed. 1 (2005) Poinsot, T., Veynante, D.: Theoretical and numerical combustion, Second Edition. R.T. Edwards, Inc., 2 ed. 1 (2005)
34.
Zurück zum Zitat Van Oijen, J., Donini, A., Bastiaans, R., Ten Thije Boonkkamp, J., De Goey, L.: State-of-the-art in premixed combustion modeling using flamelet generated manifolds. Progress Energy Combust. Sci. 57, 30–74 (2016)CrossRef Van Oijen, J., Donini, A., Bastiaans, R., Ten Thije Boonkkamp, J., De Goey, L.: State-of-the-art in premixed combustion modeling using flamelet generated manifolds. Progress Energy Combust. Sci. 57, 30–74 (2016)CrossRef
Metadaten
Titel
3D Numerical Simulation of a Laminar Experimental SWQ Burner with Tabulated Chemistry
verfasst von
A. Heinrich
S. Ganter
G. Kuenne
C. Jainski
A. Dreizler
J. Janicka
Publikationsdatum
11.09.2017
Verlag
Springer Netherlands
Erschienen in
Flow, Turbulence and Combustion / Ausgabe 2/2018
Print ISSN: 1386-6184
Elektronische ISSN: 1573-1987
DOI
https://doi.org/10.1007/s10494-017-9851-9

Weitere Artikel der Ausgabe 2/2018

Flow, Turbulence and Combustion 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.