Skip to main content
Erschienen in: Acta Mechanica 9/2020

02.07.2020 | Original Paper

A general dynamic model based on Mindlin’s high-frequency theory and the microstructure effect

verfasst von: Yilin Qu, Peng Li, Feng Jin

Erschienen in: Acta Mechanica | Ausgabe 9/2020

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Based on Hamilton’s principle, a general three-dimensional mechanical model with consideration of the consistent couple stress theory is established in this paper, and the dynamic governing equations and boundary conditions are derived strictly. After that, inspired by the high-frequency theory established by Mindlin, a novel two-dimensional theory of micro-plates is proposed. Governing equations and boundary conditions are simplified and further validated via some reductions and comparisons with the traditional Mindlin plate and the Timoshenko beam. As an application, the propagation property of straight-crested waves in a micro-plate is investigated, and the effect of couple stress is revealed. Then, the static bending and free vibration of a simply supported rectangular micro-plate is investigated with the aid of the double Fourier series. It is demonstrated that the couple stress has significant influence on the mechanical behaviors, including the static deflection and natural frequency, as the plate thickness shrinks. Physically, the couple stress effect is equivalent to an increase in structural stiffness. In order to illustrate the effect of the couple stress, a general criterion for quantifying the critical size that distinguishes microscale from macroscale is proposed numerically. To some extent, it can also be viewed as a criterion for distinguishing the consistent couple stress theory of micro-structures from the classical continuum mechanics theory of macro-structures.
Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Lam, D., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)CrossRef Lam, D., Yang, F., Chong, A., Wang, J., Tong, P.: Experiments and theory in strain gradient elasticity. J. Mech. Phys. Solids 51, 1477–1508 (2003)CrossRef
2.
Zurück zum Zitat Hadjesfandiari, A., Dargush, G.: Couple stress theory for solids. Int. J. Solids Struct. 48, 2496–2510 (2011)CrossRef Hadjesfandiari, A., Dargush, G.: Couple stress theory for solids. Int. J. Solids Struct. 48, 2496–2510 (2011)CrossRef
3.
Zurück zum Zitat Tadi, B.: Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams. J. Intell. Mat. Syst. Struct. 27, 2199–2215 (2016)CrossRef Tadi, B.: Size-dependent electromechanical bending, buckling, and free vibration analysis of functionally graded piezoelectric nanobeams. J. Intell. Mat. Syst. Struct. 27, 2199–2215 (2016)CrossRef
4.
Zurück zum Zitat Mindlin, R., Tiersten, H.: Effects of couple stresses in linear elasticity. Arch. Rat. Mech. Anal. 11, 415–447 (1962)MathSciNetCrossRef Mindlin, R., Tiersten, H.: Effects of couple stresses in linear elasticity. Arch. Rat. Mech. Anal. 11, 415–447 (1962)MathSciNetCrossRef
5.
Zurück zum Zitat Toupin, R.: Theory of elasticity with couple stresses. Arch. Rat. Mech. Anal. 17, 85–112 (1964)CrossRef Toupin, R.: Theory of elasticity with couple stresses. Arch. Rat. Mech. Anal. 17, 85–112 (1964)CrossRef
6.
Zurück zum Zitat Koiter, W.: Couple stresses in the theory of elasticity I, II. Proc. Kon. Ned. Akad. Wet. B 67, 17–44 (1964)MathSciNetMATH Koiter, W.: Couple stresses in the theory of elasticity I, II. Proc. Kon. Ned. Akad. Wet. B 67, 17–44 (1964)MathSciNetMATH
7.
Zurück zum Zitat Yang, F., Chong, A., Lam, D., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)CrossRef Yang, F., Chong, A., Lam, D., Tong, P.: Couple stress based strain gradient theory for elasticity. Int. J. Solids Struct. 39, 2731–2743 (2002)CrossRef
8.
Zurück zum Zitat Park, S., Gao, X.-L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng 16, 2355–2359 (2006)CrossRef Park, S., Gao, X.-L.: Bernoulli–Euler beam model based on a modified couple stress theory. J. Micromech. Microeng 16, 2355–2359 (2006)CrossRef
9.
Zurück zum Zitat Ma, H., Gao, X.-L., Reddy, J.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)MathSciNetCrossRef Ma, H., Gao, X.-L., Reddy, J.: A microstructure-dependent Timoshenko beam model based on a modified couple stress theory. J. Mech. Phys. Solids 56, 3379–3391 (2008)MathSciNetCrossRef
10.
Zurück zum Zitat Tsiatas, G.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46, 2757–2764 (2009)CrossRef Tsiatas, G.: A new Kirchhoff plate model based on a modified couple stress theory. Int. J. Solids Struct. 46, 2757–2764 (2009)CrossRef
11.
Zurück zum Zitat Ma, H., Gao, X.-L., Reddy, J.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220, 217–235 (2011)CrossRef Ma, H., Gao, X.-L., Reddy, J.: A non-classical Mindlin plate model based on a modified couple stress theory. Acta Mech. 220, 217–235 (2011)CrossRef
12.
Zurück zum Zitat Patel, B., Sivakumar, D., Srinivasan, S.: A simplified moment-curvature based approach for large deflection analysis of micro-beams using the consistent couple stress theory. Eur. J. Mech. A/Solids 66, 45–54 (2017)MathSciNetCrossRef Patel, B., Sivakumar, D., Srinivasan, S.: A simplified moment-curvature based approach for large deflection analysis of micro-beams using the consistent couple stress theory. Eur. J. Mech. A/Solids 66, 45–54 (2017)MathSciNetCrossRef
13.
Zurück zum Zitat Hadjesfandiari, A.: Size-dependent piezoelectricity. Int. J. Solids Struct. 50, 2781–2791 (2013)CrossRef Hadjesfandiari, A.: Size-dependent piezoelectricity. Int. J. Solids Struct. 50, 2781–2791 (2013)CrossRef
14.
Zurück zum Zitat Razavi, H., Faramarzi, B., Tadi, B.: Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory. Compos. Struct. 160, 1299–1309 (2017)CrossRef Razavi, H., Faramarzi, B., Tadi, B.: Free vibration analysis of functionally graded piezoelectric cylindrical nanoshell based on consistent couple stress theory. Compos. Struct. 160, 1299–1309 (2017)CrossRef
15.
Zurück zum Zitat Mindlin, R.: High frequency vibrations of piezoelectric crystal plates. Int. J. Solids Struct. 8, 895–906 (1972)CrossRef Mindlin, R.: High frequency vibrations of piezoelectric crystal plates. Int. J. Solids Struct. 8, 895–906 (1972)CrossRef
16.
Zurück zum Zitat Mindlin, R.: Equations of high frequency vibrations of thermopiezoelectric crystal plates. Int. J. Solids Struct. 10, 625–637 (1974)CrossRef Mindlin, R.: Equations of high frequency vibrations of thermopiezoelectric crystal plates. Int. J. Solids Struct. 10, 625–637 (1974)CrossRef
17.
Zurück zum Zitat Li, P., Jin, F., Ma, J.: Mechanical analysis on extensional and flexural deformations of a thermo-piezoelectric crystal beam with rectangular cross section. Eur. J. Mech. A/Solids 55, 35–44 (2016)MathSciNetCrossRef Li, P., Jin, F., Ma, J.: Mechanical analysis on extensional and flexural deformations of a thermo-piezoelectric crystal beam with rectangular cross section. Eur. J. Mech. A/Solids 55, 35–44 (2016)MathSciNetCrossRef
18.
Zurück zum Zitat Wang, W., Li, P., Jin, F., Wang, J.: Vibration analysis of piezoelectric ceramic circular nanoplates considering surface and nonlocal effects. Compos. Struct. 140, 758–775 (2016)CrossRef Wang, W., Li, P., Jin, F., Wang, J.: Vibration analysis of piezoelectric ceramic circular nanoplates considering surface and nonlocal effects. Compos. Struct. 140, 758–775 (2016)CrossRef
19.
Zurück zum Zitat Wang, W., Li, P., Jin, F.: An analytical model of a broadband magnetic energy nanoharvester array with consideration of flexoelectricity and surface effect. J. Phys. D: Appl. Phys. 51, 155304 (2018)CrossRef Wang, W., Li, P., Jin, F.: An analytical model of a broadband magnetic energy nanoharvester array with consideration of flexoelectricity and surface effect. J. Phys. D: Appl. Phys. 51, 155304 (2018)CrossRef
20.
Zurück zum Zitat Lee, P., Syngellakis, S., Hou, J.: A two dimensional theory for highfrequency vibrations of piezoelectric crystal plates with or without electrodes. J. Appl. Phys. 61, 1249–1262 (1987)CrossRef Lee, P., Syngellakis, S., Hou, J.: A two dimensional theory for highfrequency vibrations of piezoelectric crystal plates with or without electrodes. J. Appl. Phys. 61, 1249–1262 (1987)CrossRef
21.
Zurück zum Zitat Lee, P., Yu, J., Lin, W.: A new two-dimensional theory for vibrations of piezoelectric crystal plates with electroded faces. J. Appl. Phys. 83, 1213–1223 (1988)CrossRef Lee, P., Yu, J., Lin, W.: A new two-dimensional theory for vibrations of piezoelectric crystal plates with electroded faces. J. Appl. Phys. 83, 1213–1223 (1988)CrossRef
22.
Zurück zum Zitat Yang, J.: Equations for the extension and flexure of a piezoelectric beam with rectangular cross section and applications. Int. J. Appl. Electromagn. Mech. 9, 409–420 (1998)CrossRef Yang, J.: Equations for the extension and flexure of a piezoelectric beam with rectangular cross section and applications. Int. J. Appl. Electromagn. Mech. 9, 409–420 (1998)CrossRef
23.
Zurück zum Zitat Yang, J., Fang, H., Jiang, Q.: Equations for a piezoelectric parallelepiped and applications in a gyroscope. Int. J. Appl. Electromagn. Mech. 10, 337–350 (1999)CrossRef Yang, J., Fang, H., Jiang, Q.: Equations for a piezoelectric parallelepiped and applications in a gyroscope. Int. J. Appl. Electromagn. Mech. 10, 337–350 (1999)CrossRef
24.
Zurück zum Zitat Zhang, C., Chen, W., Li, J., Yang, J.: One-dimensional equations for piezoelectromagnetic beams and magnetoelectric effects in fibers. Smart Mater. Struct. 18, 095026 (2009)CrossRef Zhang, C., Chen, W., Li, J., Yang, J.: One-dimensional equations for piezoelectromagnetic beams and magnetoelectric effects in fibers. Smart Mater. Struct. 18, 095026 (2009)CrossRef
25.
Zurück zum Zitat Li, X., Bhushan, B., Takashima, K., Baek, C., Kim, Y.: Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy 97, 481–494 (2003)CrossRef Li, X., Bhushan, B., Takashima, K., Baek, C., Kim, Y.: Mechanical characterization of micro/nanoscale structures for MEMS/NEMS applications using nanoindentation techniques. Ultramicroscopy 97, 481–494 (2003)CrossRef
26.
Zurück zum Zitat Sun, C.L., Shi, J., Wang, X.D.: Fundamental study of mechanical energy harvesting using piezoelectric nanostructures. J. Appl. Phys. 108, 034309 (2010)CrossRef Sun, C.L., Shi, J., Wang, X.D.: Fundamental study of mechanical energy harvesting using piezoelectric nanostructures. J. Appl. Phys. 108, 034309 (2010)CrossRef
27.
Zurück zum Zitat Lew, L.C., Voon, Y., Willatzen, M.: Electromechanical phenomena in semiconductor nanostructures. J. Appl. Phys. 109, 031101 (2011)CrossRef Lew, L.C., Voon, Y., Willatzen, M.: Electromechanical phenomena in semiconductor nanostructures. J. Appl. Phys. 109, 031101 (2011)CrossRef
28.
Zurück zum Zitat Fang, X.Q., Liu, J.X., Gupta, V.: Fundamental formulations and recent achievements in piezoelectric nano-structures: a review. Nanoscale 5, 1716–1726 (2013)CrossRef Fang, X.Q., Liu, J.X., Gupta, V.: Fundamental formulations and recent achievements in piezoelectric nano-structures: a review. Nanoscale 5, 1716–1726 (2013)CrossRef
29.
Zurück zum Zitat Li, M., Tang, X., Roukes, M.: Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nature Nanotech. 2, 114–120 (2007)CrossRef Li, M., Tang, X., Roukes, M.: Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nature Nanotech. 2, 114–120 (2007)CrossRef
30.
Zurück zum Zitat Hadjesfandiari, A., Dargush, G.: Fundamental solutions for isotropic size-dependent couple stress elasticity. Int. J. Solids Struct. 50, 1253–1265 (2013)CrossRef Hadjesfandiari, A., Dargush, G.: Fundamental solutions for isotropic size-dependent couple stress elasticity. Int. J. Solids Struct. 50, 1253–1265 (2013)CrossRef
31.
Zurück zum Zitat Qu, Y., Li, P., Jin, F.: A general dynamic theoretical model of elastic micro-structures with consideration of couple stress effects and its application in mechanical analysis of size-dependent properties. Acta Mech 231, 471–488 (2020)MathSciNetCrossRef Qu, Y., Li, P., Jin, F.: A general dynamic theoretical model of elastic micro-structures with consideration of couple stress effects and its application in mechanical analysis of size-dependent properties. Acta Mech 231, 471–488 (2020)MathSciNetCrossRef
Metadaten
Titel
A general dynamic model based on Mindlin’s high-frequency theory and the microstructure effect
verfasst von
Yilin Qu
Peng Li
Feng Jin
Publikationsdatum
02.07.2020
Verlag
Springer Vienna
Erschienen in
Acta Mechanica / Ausgabe 9/2020
Print ISSN: 0001-5970
Elektronische ISSN: 1619-6937
DOI
https://doi.org/10.1007/s00707-020-02714-7

Weitere Artikel der Ausgabe 9/2020

Acta Mechanica 9/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.