Skip to main content
Erschienen in: International Journal of Computer Vision 4/2024

23.10.2023

A General Paradigm with Detail-Preserving Conditional Invertible Network for Image Fusion

verfasst von: Wu Wang, Liang-Jian Deng, Ran Ran, Gemine Vivone

Erschienen in: International Journal of Computer Vision | Ausgabe 4/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Existing deep learning techniques for image fusion either learn image mapping (LIM) directly, which renders them ineffective at preserving details due to the equal consideration to each pixel, or learn detail mapping (LDM), which only attains a limited level of performance because only details are used for reasoning. The recent lossless invertible network (INN) has demonstrated its detail-preserving ability. However, the direct applicability of INN to the image fusion task is limited by the volume-preserving constraint. Additionally, there is the lack of a consistent detail-preserving image fusion framework to produce satisfactory outcomes. To this aim, we propose a general paradigm for image fusion based on a novel conditional INN (named DCINN). The DCINN paradigm has three core components: a decomposing module that converts image mapping to detail mapping; an auxiliary network (ANet) that extracts auxiliary features directly from source images; and a conditional INN (CINN) that learns the detail mapping based on auxiliary features. The novel design benefits from the advantages of INN, LIM, and LDM approaches while avoiding their disadvantages. Particularly, using INN to LDM can easily meet the volume-preserving constraint while still preserving details. Moreover, since auxiliary features serve as conditional features, the ANet allows for the use of more than just details for reasoning without compromising detail mapping. Extensive experiments on three benchmark fusion problems, i.e., pansharpening, hyperspectral and multispectral image fusion, and infrared and visible image fusion, demonstrate the superiority of our approach compared with recent state-of-the-art methods. The code is available at https://​github.​com/​wwhappylife/​DCINN

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
We just use this toy example to indicate the challenges of applying INN to image fusion. The involved invertible transformation in our CDINN paradigm is much more complex and powerful.
 
2
The notation \(\textsf {size}({\textbf {x}})\) denotes the total size (or the so-called volume) of \({\textbf {x}}\).
 
3
For the different tasks, the two source images are different. For example, the two source images are the PAN image and LRMS image for pansharpening. More details about the other applications can be found from the bottom part of Fig. 3
 
4
For convenience, we unfold the two-dimensional images into one-dimensional vectors. The same for the subsequent notations.
 
5
\({\textbf {R}}^+\) can be easily computed by using the Matlab function “pinv(R)”.
 
6
In the experiments, the low-pass filter is a zero-mean Gaussian filter with size of \(11\times 11\) and standard deviation equal to 1.
 
7
The Harr transform is an invertible transform that satisfies the volume-preserving constraint by increasing the number of channels when downsampling the image.
 
8
We mentioned that INN has a small capacity due to feature splitting. Thus, enhancing the channel interaction is very important for INN to increase the capacity.
 
9
The symbol “\(\vert \)” indicates that CINN takes \({\textbf {F}}_\textrm{a}\) as conditional features.
 
10
The reason why using different learning ways is given in Sect. 3.1 Even though there are different learning ways, the incorporation into a uniform framework is not affected.
 
11
IVF is considered a typical multi-model image fusion task addressed in an unsupervised way.
 
16
Both MS-SSIM and MI can be used as reference metrics, but for the IVF task, the references are not available.
 
17
DCINN can be just seen as an upper bound.
 
18
The reasons we chose IFCNN rather than U2Fusion or YDTR are that IFCNN yields better visual quality than U2Fusion and YDTR tends to generate artifacts.
 
20
We simply adopt the mean rule as detail fusion rule.
 
Literatur
Zurück zum Zitat Adu, J. J., Gan, J. H., Wang, Y., & Huang, J. (2013). Image fusion based on non-subsampled contourlet transform for infrared and visible light image. Infrared Physics and Technology, 61, 94–100. Adu, J. J., Gan, J. H., Wang, Y., & Huang, J. (2013). Image fusion based on non-subsampled contourlet transform for infrared and visible light image. Infrared Physics and Technology, 61, 94–100.
Zurück zum Zitat Aiazzi, B., Alparone, L., Baronti, S., & Garzelli, A. (2002). Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Transactions on Geoscience and Remote Sensing, 40, 2300–2312. Aiazzi, B., Alparone, L., Baronti, S., & Garzelli, A. (2002). Context-driven fusion of high spatial and spectral resolution images based on oversampled multiresolution analysis. IEEE Transactions on Geoscience and Remote Sensing, 40, 2300–2312.
Zurück zum Zitat Alexander, T. (2017). The TNO multiband image data collection. Data in brief, 15, 249–251. Alexander, T. (2017). The TNO multiband image data collection. Data in brief, 15, 249–251.
Zurück zum Zitat Alparone, L., Aiazzi, B., Baronti, S., Garzelli, A., Nencini, F., & Selva, M. (2008). Multispectral and panchromatic data fusion assessment without reference. Photogrammetric Engineering and Remote Sensing, 74(2), 193–200. Alparone, L., Aiazzi, B., Baronti, S., Garzelli, A., Nencini, F., & Selva, M. (2008). Multispectral and panchromatic data fusion assessment without reference. Photogrammetric Engineering and Remote Sensing, 74(2), 193–200.
Zurück zum Zitat Andrea, G., Filippo, N., & Luca, C. (2007). Optimal MMSE pan sharpening of very high resolution multispectral images. IEEE Transactions on Geoscience and Remote Sensing, 46(1), 228–236. Andrea, G., Filippo, N., & Luca, C. (2007). Optimal MMSE pan sharpening of very high resolution multispectral images. IEEE Transactions on Geoscience and Remote Sensing, 46(1), 228–236.
Zurück zum Zitat Ardizzone, L., Lüth, C., Kruse, J., Rother, C., & Köthe, U. (2019). Guided image generation with conditional invertible neural networks. CoRR. Ardizzone, L., Lüth, C., Kruse, J., Rother, C., & Köthe, U. (2019). Guided image generation with conditional invertible neural networks. CoRR.
Zurück zum Zitat Barata, J., & Hussein, M. (2012). The Moore–Penrose pseudoinverse: A tutorial review of the theory. Brazilian Journal of Physics, 42, 146–165. Barata, J., & Hussein, M. (2012). The Moore–Penrose pseudoinverse: A tutorial review of the theory. Brazilian Journal of Physics, 42, 146–165.
Zurück zum Zitat Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D., & Jacobsen, J. H.(2019). Invertible residual networks. In International Conference on Machine Learning (ICML) (pp. 573–582). Behrmann, J., Grathwohl, W., Chen, R. T., Duvenaud, D., & Jacobsen, J. H.(2019). Invertible residual networks. In International Conference on Machine Learning (ICML) (pp. 573–582).
Zurück zum Zitat Chakrabarti, A., & Zickler, T. (2011). Statistics of real-world hyperspectral images. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 193–200). Chakrabarti, A., & Zickler, T. (2011). Statistics of real-world hyperspectral images. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 193–200).
Zurück zum Zitat Choi, J., Yu, K., & Kim, Y. (2010). A new adaptive component substitution based satellite image fusion by using partial replacement. IEEE Transactions on Geoscience and Remote Sensing, 49(1), 295–309. Choi, J., Yu, K., & Kim, Y. (2010). A new adaptive component substitution based satellite image fusion by using partial replacement. IEEE Transactions on Geoscience and Remote Sensing, 49(1), 295–309.
Zurück zum Zitat Craig, L., & Bernard, B. (2000). Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. US Patent 6,011,875 Craig, L., & Bernard, B. (2000). Process for enhancing the spatial resolution of multispectral imagery using pan-sharpening. US Patent 6,011,875
Zurück zum Zitat Cui, J., Zhou, L., Li F, & Zha, Y. (2022). Visible and infrared image fusion by invertible neural network. In China Conference on Command and Control (CICC) (pp. 133–145). Cui, J., Zhou, L., Li F, & Zha, Y. (2022). Visible and infrared image fusion by invertible neural network. In China Conference on Command and Control (CICC) (pp. 133–145).
Zurück zum Zitat Deng, L. J., Vivone, G., Jin, C., & Chanussot, J. (2021). Detail injection-based deep convolutional neural networks for pansharpening. IEEE Transactions on Geoscience and Remote Sensing, 59(8), 6995–7010. Deng, L. J., Vivone, G., Jin, C., & Chanussot, J. (2021). Detail injection-based deep convolutional neural networks for pansharpening. IEEE Transactions on Geoscience and Remote Sensing, 59(8), 6995–7010.
Zurück zum Zitat Dian, R. W., Li, S. T., Guo, A. J., & Fang, L. (2018). Deep hyperspectral image sharpening. IEEE Transactions on Neural Networks and Learning Systems, 29(11), 5345–5355.MathSciNet Dian, R. W., Li, S. T., Guo, A. J., & Fang, L. (2018). Deep hyperspectral image sharpening. IEEE Transactions on Neural Networks and Learning Systems, 29(11), 5345–5355.MathSciNet
Zurück zum Zitat Dinh L, Krueger D, Bengio Y (2015) Nice: Non-linear independent components estimation. In Conference on Learning Representations (ICLR) Workshop Track. Dinh L, Krueger D, Bengio Y (2015) Nice: Non-linear independent components estimation. In Conference on Learning Representations (ICLR) Workshop Track.
Zurück zum Zitat Dong, W. S., Zhou, C., Wu, F. F., Wu, J., Shi, G., & Li, X. (2021). Model-guided deep hyperspectral image super-resolution. IEEE Transactions on Image Processing, 30, 5754–5768. Dong, W. S., Zhou, C., Wu, F. F., Wu, J., Shi, G., & Li, X. (2021). Model-guided deep hyperspectral image super-resolution. IEEE Transactions on Image Processing, 30, 5754–5768.
Zurück zum Zitat Emiel H, Victor GS, Jakub T, & Welling, M. (2020) The Convolution Exponential and Generalized Sylvester Flows. In Conference on Neural Information Processing Systems (NeurIPS) (pp. 18249–18260). Emiel H, Victor GS, Jakub T, & Welling, M. (2020) The Convolution Exponential and Generalized Sylvester Flows. In Conference on Neural Information Processing Systems (NeurIPS) (pp. 18249–18260).
Zurück zum Zitat Eskicioglu, A., & Fisher, P. (1995). Image quality measures and their performance. IEEE Transactions on Communications, 43(12), 2959–2965. Eskicioglu, A., & Fisher, P. (1995). Image quality measures and their performance. IEEE Transactions on Communications, 43(12), 2959–2965.
Zurück zum Zitat Fu, X. Y., Wang, W., Huang, Y., Ding, X., & Paisley, J. (2020). Deep multiscale detail networks for multiband spectral image sharpening. IEEE Transactions on Neural Networks and Learning Systems, 32(5), 2090–2104. Fu, X. Y., Wang, W., Huang, Y., Ding, X., & Paisley, J. (2020). Deep multiscale detail networks for multiband spectral image sharpening. IEEE Transactions on Neural Networks and Learning Systems, 32(5), 2090–2104.
Zurück zum Zitat Garzelli, A., & Nencini, F. (2009). Hypercomplex quality assessment of multi/hyperspectral images. IEEE Geoscience and Remote Sensing Letters, 6(4), 662–665. Garzelli, A., & Nencini, F. (2009). Hypercomplex quality assessment of multi/hyperspectral images. IEEE Geoscience and Remote Sensing Letters, 6(4), 662–665.
Zurück zum Zitat Giuseppe, M., Davide, C., Luisa, V., & Scarpa, G. (2016). Pansharpening by convolutional neural networks. Remote Sensing, 8(7), 594. Giuseppe, M., Davide, C., Luisa, V., & Scarpa, G. (2016). Pansharpening by convolutional neural networks. Remote Sensing, 8(7), 594.
Zurück zum Zitat Gomez, A. N., Ren, M., Urtasun, R., & Grosse, R. B. (2017) The reversible residual network: Backpropagation without storing activations. In Conference on Neural Information Processing Systems (NeurIPS). Gomez, A. N., Ren, M., Urtasun, R., & Grosse, R. B. (2017) The reversible residual network: Backpropagation without storing activations. In Conference on Neural Information Processing Systems (NeurIPS).
Zurück zum Zitat Guan, P. Y., & Lam, E. Y. (2021). Multistage dual-attention guided fusion network for hyperspectral pansharpening. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–14. Guan, P. Y., & Lam, E. Y. (2021). Multistage dual-attention guided fusion network for hyperspectral pansharpening. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–14.
Zurück zum Zitat Guo, A. J., Dian, R. W., & Li, S. T. (2023). A deep framework for hyperspectral image fusion between different satellites. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(7), 7939–7954. Guo, A. J., Dian, R. W., & Li, S. T. (2023). A deep framework for hyperspectral image fusion between different satellites. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(7), 7939–7954.
Zurück zum Zitat Guo, P. H., Zhuang, P. X., & Guo, Y. C. (2020). Bayesian pan-sharpening with multiorder gradient-based deep network constraints. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 950–962. Guo, P. H., Zhuang, P. X., & Guo, Y. C. (2020). Bayesian pan-sharpening with multiorder gradient-based deep network constraints. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 950–962.
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2016) Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 770–778). He, K., Zhang, X., Ren, S., & Sun, J. (2016) Deep residual learning for image recognition. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 770–778).
Zurück zum Zitat He, L., Rao, Y. Z., Li, J., Chanussot, J., Plaza, A., Zhu, J., & Li, B. (2019). Pansharpening via detail injection based convolutional neural networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(4), 1188–1204. He, L., Rao, Y. Z., Li, J., Chanussot, J., Plaza, A., Zhu, J., & Li, B. (2019). Pansharpening via detail injection based convolutional neural networks. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 12(4), 1188–1204.
Zurück zum Zitat Hou, R. C., Zhou, D. M., Nie, R. C., Liu, D., Xiong, L., Guo, Y., & Yu, C. (2020). VIF-Net: An unsupervised framework for infrared and visible image fusion. IEEE Transactions on Computational Imaging, 6, 640–651. Hou, R. C., Zhou, D. M., Nie, R. C., Liu, D., Xiong, L., Guo, Y., & Yu, C. (2020). VIF-Net: An unsupervised framework for infrared and visible image fusion. IEEE Transactions on Computational Imaging, 6, 640–651.
Zurück zum Zitat Hu, J. F., Huang, T. Z., Deng, L. J., Dou, H. X., Hong, D., & Vivone, G. (2022). Fusformer: A transformer-based fusion network for hyperspectral image super-resolution. IEEE Geoscience and Remote Sensing Letters, 19, 1–5. Hu, J. F., Huang, T. Z., Deng, L. J., Dou, H. X., Hong, D., & Vivone, G. (2022). Fusformer: A transformer-based fusion network for hyperspectral image super-resolution. IEEE Geoscience and Remote Sensing Letters, 19, 1–5.
Zurück zum Zitat Hu, J. F., Huang, T. Z., Deng, L. J., Jiang, T. X., Vivone, G., & Chanussot, J. (2022). Hyperspectral image super-resolution via deep spatiospectral attention convolutional neural networks. IEEE Transactions on Neural Networks and Learning Systems, 33(12), 7251–7265. Hu, J. F., Huang, T. Z., Deng, L. J., Jiang, T. X., Vivone, G., & Chanussot, J. (2022). Hyperspectral image super-resolution via deep spatiospectral attention convolutional neural networks. IEEE Transactions on Neural Networks and Learning Systems, 33(12), 7251–7265.
Zurück zum Zitat Huang G, Liu Z, Maaten LVD, & Weinberger, K. Q. (2017) Densely connected convolutional networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (pp. 4700–4708). Huang G, Liu Z, Maaten LVD, & Weinberger, K. Q. (2017) Densely connected convolutional networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR). (pp. 4700–4708).
Zurück zum Zitat Huang, J. J., & Dragotti, P. L. (2022). WINNet: Wavelet-inspired invertible network for image denoising. IEEE Transactions on Image Processing, 31, 4377–4392. Huang, J. J., & Dragotti, P. L. (2022). WINNet: Wavelet-inspired invertible network for image denoising. IEEE Transactions on Image Processing, 31, 4377–4392.
Zurück zum Zitat Huang, T., Dong, W. S., Wu, J. J., Li, L., Li, X., & Shi, G. (2022). Deep hyperspectral image fusion network with iterative spatio-spectral regularization. IEEE Transactions on Computational Imaging, 8, 201–214. Huang, T., Dong, W. S., Wu, J. J., Li, L., Li, X., & Shi, G. (2022). Deep hyperspectral image fusion network with iterative spatio-spectral regularization. IEEE Transactions on Computational Imaging, 8, 201–214.
Zurück zum Zitat Jin, C., Deng, L. J., Huang, T. Z., & Vivone, G. (2022). Laplacian pyramid networks: A new approach for multispectral pansharpening. Information Fusion, 78, 158–170. Jin, C., Deng, L. J., Huang, T. Z., & Vivone, G. (2022). Laplacian pyramid networks: A new approach for multispectral pansharpening. Information Fusion, 78, 158–170.
Zurück zum Zitat Jin ZR, Zhang TJ, Jiang TX, Vivone, G., & Deng, L. J. (2022b) LAGConv: Local-context adaptive convolution kernels with global harmonic bias for pansharpening. In AAAI Conference on Artificial Intelligence (AAAI) (pp. 1113–1121). Jin ZR, Zhang TJ, Jiang TX, Vivone, G., & Deng, L. J. (2022b) LAGConv: Local-context adaptive convolution kernels with global harmonic bias for pansharpening. In AAAI Conference on Artificial Intelligence (AAAI) (pp. 1113–1121).
Zurück zum Zitat Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization. In International Conference On Learning Representations (ICLR) (p. 80). Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization. In International Conference On Learning Representations (ICLR) (p. 80).
Zurück zum Zitat Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. In Conference on Neural Information Processing Systems (NeurIPS). Kingma, D. P., & Dhariwal, P. (2018). Glow: Generative flow with invertible 1x1 convolutions. In Conference on Neural Information Processing Systems (NeurIPS).
Zurück zum Zitat Lanaras, C., Baltsavias, E., & Schindler, K. (2015). Hyperspectral super-resolution by coupled spectral unmixing. In International Conference on Computer Vision (ICCV) (pp. 3586–3594). Lanaras, C., Baltsavias, E., & Schindler, K. (2015). Hyperspectral super-resolution by coupled spectral unmixing. In International Conference on Computer Vision (ICCV) (pp. 3586–3594).
Zurück zum Zitat Li, H., & Wu, X. J. (2019). DenseFuse: A fusion approach to infrared and visible images. IEEE Transactions on Image Processing, 28(5), 2614–2623.MathSciNet Li, H., & Wu, X. J. (2019). DenseFuse: A fusion approach to infrared and visible images. IEEE Transactions on Image Processing, 28(5), 2614–2623.MathSciNet
Zurück zum Zitat Li, H., Wu, X. J., & Kittler, J. (2021). RFN-Nest: An end-to-end residual fusion network for infrared and visible images. Information Fusion, 73, 72–86. Li, H., Wu, X. J., & Kittler, J. (2021). RFN-Nest: An end-to-end residual fusion network for infrared and visible images. Information Fusion, 73, 72–86.
Zurück zum Zitat Liu, J. G. (2002). Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details. International Journal of Remote Sensing, 23(3), 593–597. Liu, J. G. (2002). Smoothing filter-based intensity modulation: A spectral preserve image fusion technique for improving spatial details. International Journal of Remote Sensing, 23(3), 593–597.
Zurück zum Zitat Liu, J. Y., Dian, R. W., Li, S. T., & Liu, H. (2023). SGFusion: A saliency guided deep-learning framework for pixel-level image fusion. Information Fusion, 91, 205–214. Liu, J. Y., Dian, R. W., Li, S. T., & Liu, H. (2023). SGFusion: A saliency guided deep-learning framework for pixel-level image fusion. Information Fusion, 91, 205–214.
Zurück zum Zitat Liu, R. S., Liu, J. Y., Jiang, Z. Y., Fan, X., & Luo, Z. (2020). A bilevel integrated model with data-driven layer ensemble for multi-modality image fusion. IEEE Transactions on Image Processing, 30, 1261–1274. Liu, R. S., Liu, J. Y., Jiang, Z. Y., Fan, X., & Luo, Z. (2020). A bilevel integrated model with data-driven layer ensemble for multi-modality image fusion. IEEE Transactions on Image Processing, 30, 1261–1274.
Zurück zum Zitat Liu, X. Y., Liu, Q. J., & Wang, Y. H. (2020). Remote sensing image fusion based on two-stream fusion network. Information Fusion, 55, 1–15. Liu, X. Y., Liu, Q. J., & Wang, Y. H. (2020). Remote sensing image fusion based on two-stream fusion network. Information Fusion, 55, 1–15.
Zurück zum Zitat Lu, S. P., Wang, R., Zhong, T., & Rosin, P. L. (2021) Large-capacity image steganography based on invertible neural networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 10816–10825). Lu, S. P., Wang, R., Zhong, T., & Rosin, P. L. (2021) Large-capacity image steganography based on invertible neural networks. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 10816–10825).
Zurück zum Zitat Ma, J. Y., Chen, C., Li, C., & Huang, J. (2016). Infrared and visible image fusion via gradient transfer and total variation minimization. Information Fusion, 31, 100–109. Ma, J. Y., Chen, C., Li, C., & Huang, J. (2016). Infrared and visible image fusion via gradient transfer and total variation minimization. Information Fusion, 31, 100–109.
Zurück zum Zitat Ma, J. Y., Yu, W., Liang, P. W., Li, C., & Jiang, J. (2019). FusionGAN: A generative adversarial network for infrared and visible image fusion. Information Fusion, 48, 11–26. Ma, J. Y., Yu, W., Liang, P. W., Li, C., & Jiang, J. (2019). FusionGAN: A generative adversarial network for infrared and visible image fusion. Information Fusion, 48, 11–26.
Zurück zum Zitat Ma, J. Y., Liang, P. W., Yu, W., Chen, C., Guo, X., Wu, J., & Jiang, J. (2020). Infrared and visible image fusion via detail preserving adversarial learning. Information Fusion, 54, 85–98. Ma, J. Y., Liang, P. W., Yu, W., Chen, C., Guo, X., Wu, J., & Jiang, J. (2020). Infrared and visible image fusion via detail preserving adversarial learning. Information Fusion, 54, 85–98.
Zurück zum Zitat Ma, J. Y., Yu, W., Chen, C., Liang, P., Guo, X., & Jiang, J. (2020). Pan-GAN: An unsupervised pan-sharpening method for remote sensing image fusion. Information Fusion, 62, 110–120. Ma, J. Y., Yu, W., Chen, C., Liang, P., Guo, X., & Jiang, J. (2020). Pan-GAN: An unsupervised pan-sharpening method for remote sensing image fusion. Information Fusion, 62, 110–120.
Zurück zum Zitat Ma, J. Y., Tang, L., Fan, F., Huang, J., Mei, X., & Ma, Y. (2022). SwinFusion: Cross-domain long-range learning for general image fusion via swin transformer. IEEE/CAA Journal of Automatica Sinica, 9(7), 1200–1217. Ma, J. Y., Tang, L., Fan, F., Huang, J., Mei, X., & Ma, Y. (2022). SwinFusion: Cross-domain long-range learning for general image fusion via swin transformer. IEEE/CAA Journal of Automatica Sinica, 9(7), 1200–1217.
Zurück zum Zitat Miguel, S., Bioucas-Dias, J., Almeida, L. B., & Chanussot, J. (2015). A convex formulation for hyperspectral image superresolution via subspace-based regularization. IEEE Transactions on Geoscience and Remote Sensing, 53(6), 3373–3388. Miguel, S., Bioucas-Dias, J., Almeida, L. B., & Chanussot, J. (2015). A convex formulation for hyperspectral image superresolution via subspace-based regularization. IEEE Transactions on Geoscience and Remote Sensing, 53(6), 3373–3388.
Zurück zum Zitat Naoto, Y., Takehisa, Y., & Akira, I. (2012). Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion. IEEE Transactions on Geoscience and Remote Sensing, 50(2), 528–537. Naoto, Y., Takehisa, Y., & Akira, I. (2012). Coupled nonnegative matrix factorization unmixing for hyperspectral and multispectral data fusion. IEEE Transactions on Geoscience and Remote Sensing, 50(2), 528–537.
Zurück zum Zitat Qi, W., Nicolas, D., & Jean-Yves, T. (2015). Fast fusion of multi-band images based on solving a Sylvester equation. IEEE Transactions on Image Processing, 24(11), 4109–4121.MathSciNet Qi, W., Nicolas, D., & Jean-Yves, T. (2015). Fast fusion of multi-band images based on solving a Sylvester equation. IEEE Transactions on Image Processing, 24(11), 4109–4121.MathSciNet
Zurück zum Zitat Rao, Y. J. (1997). In-fibre Bragg grating sensors. Measurement science and technology, 8, 355–358. Rao, Y. J. (1997). In-fibre Bragg grating sensors. Measurement science and technology, 8, 355–358.
Zurück zum Zitat Vivone, G., Restaino, R., & Chanussot, J. (2018). Full scale regression-based injection coefficients for panchromatic sharpening. IEEE Transactions on Image Processing, 27(7), 3418–3431.MathSciNet Vivone, G., Restaino, R., & Chanussot, J. (2018). Full scale regression-based injection coefficients for panchromatic sharpening. IEEE Transactions on Image Processing, 27(7), 3418–3431.MathSciNet
Zurück zum Zitat Wald, L. (2002). Data Fusion. Definitions and Architectures—Fusion of Images of Different Spatial Resolutions. Presses des MINES. Wald, L. (2002). Data Fusion. Definitions and Architectures—Fusion of Images of Different Spatial Resolutions. Presses des MINES.
Zurück zum Zitat Wald, L., Ranchin, T., & Mangolini, M. (1997). Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. Photogrammetric Engineering and Remote Sensing, 63(6), 691–699. Wald, L., Ranchin, T., & Mangolini, M. (1997). Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. Photogrammetric Engineering and Remote Sensing, 63(6), 691–699.
Zurück zum Zitat Wang, L. G., Guo, Y. L., Dong, X. Y., Wang, Y., Ying, X., Lin, Z., & An, W. (2022). Exploring fine-grained sparsity in convolutional neural networks for efficient inference. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4), 4474–4493. Wang, L. G., Guo, Y. L., Dong, X. Y., Wang, Y., Ying, X., Lin, Z., & An, W. (2022). Exploring fine-grained sparsity in convolutional neural networks for efficient inference. IEEE Transactions on Pattern Analysis and Machine Intelligence, 45(4), 4474–4493.
Zurück zum Zitat Wang W, Zeng WH, Huang Y, Ding, X., & Paisley, J. (2019). Deep blind hyperspectral image fusion. In International Conference on Computer Vision (ICCV) (pp. 4150–4159). Wang W, Zeng WH, Huang Y, Ding, X., & Paisley, J. (2019). Deep blind hyperspectral image fusion. In International Conference on Computer Vision (ICCV) (pp. 4150–4159).
Zurück zum Zitat Wang, Z., Simoncelli, E. P., & Bovik, A. C. (2003). Multiscale structural similarity for image quality assessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems and Computers (ACSSC) (pp. 1398–1402). Wang, Z., Simoncelli, E. P., & Bovik, A. C. (2003). Multiscale structural similarity for image quality assessment. In The Thrity-Seventh Asilomar Conference on Signals, Systems and Computers (ACSSC) (pp. 1398–1402).
Zurück zum Zitat Wesley, R., van Aardt, J., & Fethi, A. (2008). Assessment of image fusion procedures using entropy, image quality, and multispectral classification. Journal of Applied Remote Sensing, 2, 1–28. Wesley, R., van Aardt, J., & Fethi, A. (2008). Assessment of image fusion procedures using entropy, image quality, and multispectral classification. Journal of Applied Remote Sensing, 2, 1–28.
Zurück zum Zitat Wu, Z. C., Huang, T. Z., Deng, L. J., Huang, J., Chanussot, J., & Vivone, G. (2023). LRTCFPan: Low-rank tensor completion based framework for pansharpening. IEEE Transactions on Image Processing, 32, 1640–1655. Wu, Z. C., Huang, T. Z., Deng, L. J., Huang, J., Chanussot, J., & Vivone, G. (2023). LRTCFPan: Low-rank tensor completion based framework for pansharpening. IEEE Transactions on Image Processing, 32, 1640–1655.
Zurück zum Zitat Xiao, J. J., Li, J., Yuan, Q. Q., & Zhang, L. (2022). A dual-UNet with multistage details injection for hyperspectral image fusion. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–13. Xiao, J. J., Li, J., Yuan, Q. Q., & Zhang, L. (2022). A dual-UNet with multistage details injection for hyperspectral image fusion. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–13.
Zurück zum Zitat Xiao M, Zheng S, Liu C, Wang, Y., He, D., Ke, G., Bian, J., Lin, Z., & Liu, T. Y. (2020). Invertible image rescaling. In European Conference on Computer Vision (ECCV) (pp. 126–144). Xiao M, Zheng S, Liu C, Wang, Y., He, D., Ke, G., Bian, J., Lin, Z., & Liu, T. Y. (2020). Invertible image rescaling. In European Conference on Computer Vision (ECCV) (pp. 126–144).
Zurück zum Zitat Xu, H., Ma, J., Le, Z., Jiang, J., & Guo, X. (2020). FusionDN: A unified densely connected network for image fusion. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (pp. 12484–12491). Xu, H., Ma, J., Le, Z., Jiang, J., & Guo, X. (2020). FusionDN: A unified densely connected network for image fusion. In Proceedings of the AAAI Conference on Artificial Intelligence (AAAI) (pp. 12484–12491).
Zurück zum Zitat Xu, H., Ma, J. Y., Jiang, J. J., Guo, X., & Ling, H. (2022). U2Fusion: A unified unsupervised image fusion network. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(1), 502–518. Xu, H., Ma, J. Y., Jiang, J. J., Guo, X., & Ling, H. (2022). U2Fusion: A unified unsupervised image fusion network. IEEE Transactions on Pattern Analysis and Machine Intelligence, 44(1), 502–518.
Zurück zum Zitat Xu, Q. Z., Zhang, Y., Li, B., & Ding, L. (2014). Pansharpening using regression of classified MS and pan images to reduce color distortion. IEEE Geoscience and Remote Sensing Letters, 12(1), 28–32. Xu, Q. Z., Zhang, Y., Li, B., & Ding, L. (2014). Pansharpening using regression of classified MS and pan images to reduce color distortion. IEEE Geoscience and Remote Sensing Letters, 12(1), 28–32.
Zurück zum Zitat Xu, S., Zhang, J., Zhao, Z., Sun, K., Liu, J., & Zhang, C. (2021). Deep gradient projection networks for pan-sharpening. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1366–1375). Xu, S., Zhang, J., Zhao, Z., Sun, K., Liu, J., & Zhang, C. (2021). Deep gradient projection networks for pan-sharpening. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 1366–1375).
Zurück zum Zitat Xu, Y., & Zhang, J. (2021). Invertible resampling-based layered image compression. In 2021 Data Compression Conference (DCC) (pp. 380–380). Xu, Y., & Zhang, J. (2021). Invertible resampling-based layered image compression. In 2021 Data Compression Conference (DCC) (pp. 380–380).
Zurück zum Zitat Yan, Y. S., Liu, J. M., Xu, S., Wang, Y., & Cao, X. (2022). MD\(^3\)Net: Integrating model-driven and data-driven approaches for pansharpening. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–16. Yan, Y. S., Liu, J. M., Xu, S., Wang, Y., & Cao, X. (2022). MD\(^3\)Net: Integrating model-driven and data-driven approaches for pansharpening. IEEE Transactions on Geoscience and Remote Sensing, 60, 1–16.
Zurück zum Zitat Yang, J., Fu, X., Hu, Y., Huang, Y., Ding, X., & Paisley, J. (2017). PanNet: A deep network architecture for pan-sharpening. In International Conference on Computer Vision (ICCV) (pp. 5449–5457). Yang, J., Fu, X., Hu, Y., Huang, Y., Ding, X., & Paisley, J. (2017). PanNet: A deep network architecture for pan-sharpening. In International Conference on Computer Vision (ICCV) (pp. 5449–5457).
Zurück zum Zitat Yang, Y., Lu, H. Y., Huang, S. Y., & Tu, W. (2020). Pansharpening based on joint-guided detail extraction. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 389–401. Yang, Y., Lu, H. Y., Huang, S. Y., & Tu, W. (2020). Pansharpening based on joint-guided detail extraction. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 14, 389–401.
Zurück zum Zitat Yang, Y., Wu, L., Huang, S. Y., Wan, W., Tu, W., & Lu, H. (2020). Multiband remote sensing image pansharpening based on dual-injection model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1888–1904. Yang, Y., Wu, L., Huang, S. Y., Wan, W., Tu, W., & Lu, H. (2020). Multiband remote sensing image pansharpening based on dual-injection model. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing, 13, 1888–1904.
Zurück zum Zitat Yuhas, R. H., Goetz, A. F., & Boardman, J. W. (1992). Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm. In Annual JPL Airborne Geoscience Workshop. Yuhas, R. H., Goetz, A. F., & Boardman, J. W. (1992). Discrimination among semi-arid landscape endmembers using the spectral angle mapper (SAM) algorithm. In Annual JPL Airborne Geoscience Workshop.
Zurück zum Zitat Zamir, S. W., Arora, A., Khan, S., Hayat, M., Khan, F. S., & Yang, M. H. (2022). Restormer: Efficient transformer for high-resolution image restoration. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5728–5739). Zamir, S. W., Arora, A., Khan, S., Hayat, M., Khan, F. S., & Yang, M. H. (2022). Restormer: Efficient transformer for high-resolution image restoration. In IEEE Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5728–5739).
Zurück zum Zitat Zhang, X. T., Huang, W., Wang, Q., & Li, X. (2021). SSR-NET: Spatial-spectral reconstruction network for hyperspectral and multispectral image fusion. IEEE Transactions on Geoscience and Remote Sensing, 59(7), 5953–5965. Zhang, X. T., Huang, W., Wang, Q., & Li, X. (2021). SSR-NET: Spatial-spectral reconstruction network for hyperspectral and multispectral image fusion. IEEE Transactions on Geoscience and Remote Sensing, 59(7), 5953–5965.
Zurück zum Zitat Zhang, Y., Liu, Y., Sun, P., Yan, H., Zhao, X., & Zhang, L. (2020). IFCNN: A general image fusion framework based on convolutional neural network. Information Fusion, 54, 99–118. Zhang, Y., Liu, Y., Sun, P., Yan, H., Zhao, X., & Zhang, L. (2020). IFCNN: A general image fusion framework based on convolutional neural network. Information Fusion, 54, 99–118.
Zurück zum Zitat Zhao, R., Liu, T. S., Xiao, J., Lun, D. P., & Lam, K. M. (2021). Invertible image decolorization. IEEE Transactions on Image Processing, 30, 6081–6095. Zhao, R., Liu, T. S., Xiao, J., Lun, D. P., & Lam, K. M. (2021). Invertible image decolorization. IEEE Transactions on Image Processing, 30, 6081–6095.
Zurück zum Zitat Zhao, Z., Xu, S., Zhang, C., Liu, J., Li, P., & Zhang, J. (2020). DIDFuse: Deep image decomposition for infrared and visible image fusion. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI) (pp. 970–976). Zhao, Z., Xu, S., Zhang, C., Liu, J., Li, P., & Zhang, J. (2020). DIDFuse: Deep image decomposition for infrared and visible image fusion. In Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI) (pp. 970–976).
Zurück zum Zitat Zhao, Z., Bai, H., Zhang, J., Zhang, Y., Xu, S., Lin, Z., Timofte, R., & Van Gool, L. (2023). CDDFuse: Correlation-driven dual-branch feature decomposition for multi-modality image fusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5906–5916). Zhao, Z., Bai, H., Zhang, J., Zhang, Y., Xu, S., Lin, Z., Timofte, R., & Van Gool, L. (2023). CDDFuse: Correlation-driven dual-branch feature decomposition for multi-modality image fusion. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) (pp. 5906–5916).
Zurück zum Zitat Zhou, M., Yan, K. Y., Pan, J. S., Ren, W., Xie, Q., & Cao, X. (2023). Memory-augmented deep unfolding network for guided image super-resolution. International Journal of Computer Vision, 131(1), 215–242. Zhou, M., Yan, K. Y., Pan, J. S., Ren, W., Xie, Q., & Cao, X. (2023). Memory-augmented deep unfolding network for guided image super-resolution. International Journal of Computer Vision, 131(1), 215–242.
Zurück zum Zitat Zhou, Z. Q., Wang, B., Li, S., & Dong, M. (2016). Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters. Information Fusion, 30, 15–26. Zhou, Z. Q., Wang, B., Li, S., & Dong, M. (2016). Perceptual fusion of infrared and visible images through a hybrid multi-scale decomposition with Gaussian and bilateral filters. Information Fusion, 30, 15–26.
Zurück zum Zitat Zhuang, P., Liu, Q., & Ding, X. (2019). Pan-GGF: A probabilistic method for pan-sharpening with gradient domain guided image filtering. Signal Processing, 156, 177–190. Zhuang, P., Liu, Q., & Ding, X. (2019). Pan-GGF: A probabilistic method for pan-sharpening with gradient domain guided image filtering. Signal Processing, 156, 177–190.
Metadaten
Titel
A General Paradigm with Detail-Preserving Conditional Invertible Network for Image Fusion
verfasst von
Wu Wang
Liang-Jian Deng
Ran Ran
Gemine Vivone
Publikationsdatum
23.10.2023
Verlag
Springer US
Erschienen in
International Journal of Computer Vision / Ausgabe 4/2024
Print ISSN: 0920-5691
Elektronische ISSN: 1573-1405
DOI
https://doi.org/10.1007/s11263-023-01924-5

Weitere Artikel der Ausgabe 4/2024

International Journal of Computer Vision 4/2024 Zur Ausgabe

Premium Partner