Skip to main content

01.01.2015

A geometric protocol for cryptography with cards

verfasst von: Andrés Cordón-Franco, Hans van Ditmarsch, David Fernández-Duque, Fernando Soler-Toscano

Erschienen in: Designs, Codes and Cryptography | Ausgabe 1/2015

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the generalized Russian cards problem, the three players Alice, Bob and Cath draw \(a,b\) and \(c\) cards, respectively, from a deck of \(a+b+c\) cards. Players only know their own cards and what the deck of cards is. Alice and Bob are then required to communicate their hand of cards to each other by way of public messages. For a natural number \(k\), the communication is said to be \(k\)-safe if Cath does not learn whether or not Alice holds any given set of at most \(k\) cards that are not Cath’s, a notion originally introduced as weak \(k\)-security by Swanson and Stinson. An elegant solution by Atkinson views the cards as points in a finite projective plane. We propose a general solution in the spirit of Atkinson’s, although based on finite vector spaces rather than projective planes, and call it the ‘geometric protocol’. Given arbitrary \(c,k>0\), this protocol gives an informative and \(k\)-safe solution to the generalized Russian cards problem for infinitely many values of \((a,b,c)\) with \(b=O(ac)\). This improves on the collection of parameters for which solutions are known. In particular, it is the first solution which guarantees \(k\)-safety when Cath has more than one card.
Fußnoten
1
Note however that this restriction may be circumvented by using protocols of more than two steps [4].
 
2
Our presentation follows that given in [17]. Compare to [1, 18], where informative for \((A,B,C)\) is defined as follows: Given a deal \((A,B,C)\), an announcement \(\mathcal A \) containing \(A\) is informative for \((A,B,C)\) if for any \(A^{\prime } \in \mathcal A \) and any \((A^{\prime },B^{\prime },C^{\prime })\), there is only one \(X\in \mathcal A \) such that \(X\subseteq A^{\prime }\cup C^{\prime }\). In principle this is stronger than the definition we give; however, this is remedied by the more general condition of being informative for \((a,b,c)\).
 
Literatur
1.
Zurück zum Zitat Albert M., Aldred R., Atkinson M., van Ditmarsch H., Handley C.: Safe communication for card players by combinatorial designs for two-step protocols. Aust. J. Comb. 33, 33–46 (2005). Albert M., Aldred R., Atkinson M., van Ditmarsch H., Handley C.: Safe communication for card players by combinatorial designs for two-step protocols. Aust. J. Comb. 33, 33–46 (2005).
2.
Zurück zum Zitat Atkinson M., van Ditmarsch H., Roehling S.: Avoiding bias in cards cryptography. Aust. J. Comb. 44, 3–17 (2009). Atkinson M., van Ditmarsch H., Roehling S.: Avoiding bias in cards cryptography. Aust. J. Comb. 44, 3–17 (2009).
3.
Zurück zum Zitat Cordón-Franco A., van Ditmarsch H., Fernández-Duque D., Joosten J., Soler-Toscano F.: A secure additive protocol for card players. Aust. J. Comb. 54, 163–176 (2012). Cordón-Franco A., van Ditmarsch H., Fernández-Duque D., Joosten J., Soler-Toscano F.: A secure additive protocol for card players. Aust. J. Comb. 54, 163–176 (2012).
4.
Zurück zum Zitat Cordón-Franco A., van Ditmarsch H., Fernández-Duque D., Soler-Toscano F.: A colouring protocol for the generalized Russian cards problem. Theor. Comput. Sci. (2013). doi:10.1016/j.tcs.2013.05.010. Cordón-Franco A., van Ditmarsch H., Fernández-Duque D., Soler-Toscano F.: A colouring protocol for the generalized Russian cards problem. Theor. Comput. Sci. (2013). doi:10.​1016/​j.​tcs.​2013.​05.​010.
5.
Zurück zum Zitat Dembowski P.: Finite Geometries (reprint). Springer, Berlin (1997). Dembowski P.: Finite Geometries (reprint). Springer, Berlin (1997).
6.
Zurück zum Zitat Fischer M., Wright R.: Bounds on secret key exchange using a random deal of cards. J. Cryptol. 9(2), 71–99 (1996). Fischer M., Wright R.: Bounds on secret key exchange using a random deal of cards. J. Cryptol. 9(2), 71–99 (1996).
7.
Zurück zum Zitat Katz J., Lindell Y.: Introduction to Modern Cryptography. Chapman & Hall, London (2007). Katz J., Lindell Y.: Introduction to Modern Cryptography. Chapman & Hall, London (2007).
8.
Zurück zum Zitat Kerckhoffs A.: La cryptographie militaire. J. Des Sci. Militaires IX, 5–38, 161–191 (1883). Kerckhoffs A.: La cryptographie militaire. J. Des Sci. Militaires IX, 5–38, 161–191 (1883).
9.
Zurück zum Zitat Kirkman T.: On a problem in combinations. Camb. Dublin Math. J. 2, 191–204 (1847). Kirkman T.: On a problem in combinations. Camb. Dublin Math. J. 2, 191–204 (1847).
10.
Zurück zum Zitat Lidl R.: Finite Fields. Cambridge University Press, Cambridge (1997). Lidl R.: Finite Fields. Cambridge University Press, Cambridge (1997).
11.
Zurück zum Zitat Makarychev K., Makarychev Y.: The importance of being formal. Math. Intell. 23(1), 41–42 (2001). Makarychev K., Makarychev Y.: The importance of being formal. Math. Intell. 23(1), 41–42 (2001).
12.
Zurück zum Zitat Maurer U.: Information-theoretic cryptography. In: Wiener, M. (ed.) Advances in Cryptology, CRYPTO 1999, Lecture Notes in Computer Science, vol. 1666, pp. 47–64. Springer, Heidelberg (1999). Maurer U.: Information-theoretic cryptography. In: Wiener, M. (ed.) Advances in Cryptology, CRYPTO 1999, Lecture Notes in Computer Science, vol. 1666, pp. 47–64. Springer, Heidelberg (1999).
13.
Zurück zum Zitat Mizuki T., Shizuya H., Nishizeki T.: A complete characterization of a family of key exchange protocols. Int. J. Inf. Secur. 1, 131–142 (2002). Mizuki T., Shizuya H., Nishizeki T.: A complete characterization of a family of key exchange protocols. Int. J. Inf. Secur. 1, 131–142 (2002).
14.
Zurück zum Zitat Stiglic A.: Computations with a deck of cards. Theor. Comput. Sci. 259(1–2), 671–678 (2001). Stiglic A.: Computations with a deck of cards. Theor. Comput. Sci. 259(1–2), 671–678 (2001).
15.
Zurück zum Zitat Stinson D.: Combinatorial Designs—Constructions and Analysis. Springer, Heidelberg (2004). Stinson D.: Combinatorial Designs—Constructions and Analysis. Springer, Heidelberg (2004).
16.
Zurück zum Zitat Stinson D.: Cryptography: Theory and Practice, 3rd edn. Discrete Mathematics and Its Applications. Chapman & Hall, London (2005). Stinson D.: Cryptography: Theory and Practice, 3rd edn. Discrete Mathematics and Its Applications. Chapman & Hall, London (2005).
17.
Zurück zum Zitat Swanson C., Stinson D.: Combinatorial solutions providing improved security for the generalized Russian cards problem. Des. Codes Cryptogr. 1–23 (2012). doi:10.1007/s10623-012-9770-7. Swanson C., Stinson D.: Combinatorial solutions providing improved security for the generalized Russian cards problem. Des. Codes Cryptogr. 1–23 (2012). doi:10.​1007/​s10623-012-9770-7.
18.
Zurück zum Zitat van Ditmarsch H.: The Russian cards problem. Stud. Logica 75, 31–62 (2003). van Ditmarsch H.: The Russian cards problem. Stud. Logica 75, 31–62 (2003).
19.
Zurück zum Zitat van Ditmarsch H., Soler-Toscano F.: Three steps. In: Proceedings of CLIMA XII, Lecture Notes in Computer Science, vol. 6814, pp. 41–57. Springer, Heidelberg (2011). van Ditmarsch H., Soler-Toscano F.: Three steps. In: Proceedings of CLIMA XII, Lecture Notes in Computer Science, vol. 6814, pp. 41–57. Springer, Heidelberg (2011).
Metadaten
Titel
A geometric protocol for cryptography with cards
verfasst von
Andrés Cordón-Franco
Hans van Ditmarsch
David Fernández-Duque
Fernando Soler-Toscano
Publikationsdatum
01.01.2015
Verlag
Springer US
Erschienen in
Designs, Codes and Cryptography / Ausgabe 1/2015
Print ISSN: 0925-1022
Elektronische ISSN: 1573-7586
DOI
https://doi.org/10.1007/s10623-013-9855-y

Premium Partner