Skip to main content
Erschienen in: Journal of Scientific Computing 1/2019

28.09.2018

A Global Divergence Conforming DG Method for Hyperbolic Conservation Laws with Divergence Constraint

verfasst von: Praveen Chandrashekar

Erschienen in: Journal of Scientific Computing | Ausgabe 1/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We propose a globally divergence conforming discontinuous Galerkin (DG) method on Cartesian meshes for curl-type hyperbolic conservation laws based on directly evolving the face and cell moments of the Raviart–Thomas approximation polynomials. The face moments are evolved using a 1-D discontinuous Gakerkin method that uses 1-D and multi-dimensional Riemann solvers while the cell moments are evolved using a standard 2-D DG scheme that uses 1-D Riemann solvers. The scheme can be implemented in a local manner without the need to solve a global mass matrix which makes it a truly DG method and hence useful for explicit time stepping schemes for hyperbolic problems. The scheme is also shown to exactly preserve the divergence of the vector field at the discrete level. Numerical results using second and third order schemes for induction equation are presented to demonstrate the stability, accuracy and divergence preservation property of the scheme.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat Balsara, D.S.: Divergence-free adaptive mesh refinement for magnetohydrodynamics. J. Comput. Phys. 174, 614–648 (2001)CrossRefMATH Balsara, D.S.: Divergence-free adaptive mesh refinement for magnetohydrodynamics. J. Comput. Phys. 174, 614–648 (2001)CrossRefMATH
3.
Zurück zum Zitat Balsara, D.S.: Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. Ser. 151, 149 (2004)CrossRef Balsara, D.S.: Second-order-accurate schemes for magnetohydrodynamics with divergence-free reconstruction. Astrophys. J. Suppl. Ser. 151, 149 (2004)CrossRef
4.
Zurück zum Zitat Balsara, D.S.: Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics. J. Comput. Phys. 228, 5040–5056 (2009)MathSciNetCrossRefMATH Balsara, D.S.: Divergence-free reconstruction of magnetic fields and WENO schemes for magnetohydrodynamics. J. Comput. Phys. 228, 5040–5056 (2009)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Balsara, D.S.: Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 229, 1970–1993 (2010)MathSciNetCrossRefMATH Balsara, D.S.: Multidimensional HLLE Riemann solver: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 229, 1970–1993 (2010)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Balsara, D.S.: A two-dimensional HLLC riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 231, 7476–7503 (2012)MathSciNetCrossRefMATH Balsara, D.S.: A two-dimensional HLLC riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 231, 7476–7503 (2012)MathSciNetCrossRefMATH
7.
Zurück zum Zitat Balsara, D.S., Amano, T., Garain, S., Kim, J.: A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional riemann solver for electromagnetism. J. Comput. Phys. 318, 169–200 (2016)MathSciNetCrossRefMATH Balsara, D.S., Amano, T., Garain, S., Kim, J.: A high-order relativistic two-fluid electrodynamic scheme with consistent reconstruction of electromagnetic fields and a multidimensional riemann solver for electromagnetism. J. Comput. Phys. 318, 169–200 (2016)MathSciNetCrossRefMATH
8.
Zurück zum Zitat Balsara, D.S., Dumbser, M.: Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional riemann solvers. J. Comput. Phys. 299, 687–715 (2015)MathSciNetCrossRefMATH Balsara, D.S., Dumbser, M.: Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional riemann solvers. J. Comput. Phys. 299, 687–715 (2015)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Balsara, D.S., Dumbser, M.: Multidimensional riemann problem with self-similar internal structure. Part II—application to hyperbolic conservation laws on unstructured meshes. J. Comput. Phys. 287, 269–292 (2015)MathSciNetCrossRefMATH Balsara, D.S., Dumbser, M.: Multidimensional riemann problem with self-similar internal structure. Part II—application to hyperbolic conservation laws on unstructured meshes. J. Comput. Phys. 287, 269–292 (2015)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Balsara, D.S., Dumbser, M., Abgrall, R.: Multidimensional HLLC Riemann solver for unstructured meshes—with application to Euler and MHD flows. J. Comput. Phys. 261, 172–208 (2014)MathSciNetCrossRefMATH Balsara, D.S., Dumbser, M., Abgrall, R.: Multidimensional HLLC Riemann solver for unstructured meshes—with application to Euler and MHD flows. J. Comput. Phys. 261, 172–208 (2014)MathSciNetCrossRefMATH
11.
Zurück zum Zitat Balsara, D.S., Garain, S., Taflove, A., Montecinos, G.: Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution—part-II, higher order FVTD schemes. Submitted (2017) Balsara, D.S., Garain, S., Taflove, A., Montecinos, G.: Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution—part-II, higher order FVTD schemes. Submitted (2017)
12.
Zurück zum Zitat Balsara, D.S., Käppeli, R.: Von Neumann stability analysis of globally divergence-free RKDG schemes for the induction equation using multidimensional riemann solvers. J. Comput. Phys. 336, 104–127 (2017)MathSciNetCrossRefMATH Balsara, D.S., Käppeli, R.: Von Neumann stability analysis of globally divergence-free RKDG schemes for the induction equation using multidimensional riemann solvers. J. Comput. Phys. 336, 104–127 (2017)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Balsara, D.S., Nkonga, B.: Multidimensional riemann problem with self-similar internal structure—part iii—a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems. J. Comput. Phys. 346, 25–48 (2017)MathSciNetCrossRefMATH Balsara, D.S., Nkonga, B.: Multidimensional riemann problem with self-similar internal structure—part iii—a multidimensional analogue of the HLLI Riemann solver for conservative hyperbolic systems. J. Comput. Phys. 346, 25–48 (2017)MathSciNetCrossRefMATH
14.
Zurück zum Zitat Balsara, D.S., Taflove, A., Garain, S., Montecinos, G.: Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution–part i, second-order FVTD schemes. J. Comput. Phys. 349, 604–635 (2017)MathSciNetCrossRefMATH Balsara, D.S., Taflove, A., Garain, S., Montecinos, G.: Computational electrodynamics in material media with constraint-preservation, multidimensional Riemann solvers and sub-cell resolution–part i, second-order FVTD schemes. J. Comput. Phys. 349, 604–635 (2017)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33, 24/1–24/27 (2007)MathSciNetCrossRefMATH Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—a general purpose object oriented finite element library. ACM Trans. Math. Softw. 33, 24/1–24/27 (2007)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Besse, N., Kröner, D.: Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system. ESAIM: M2AN 39, 1177–1202 (2005)MathSciNetCrossRefMATH Besse, N., Kröner, D.: Convergence of locally divergence-free discontinuous-Galerkin methods for the induction equations of the 2D-MHD system. ESAIM: M2AN 39, 1177–1202 (2005)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Brackbill, J., Barnes, D.: The effect of nonzero div(B) on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35, 426–430 (1980)MathSciNetCrossRefMATH Brackbill, J., Barnes, D.: The effect of nonzero div(B) on the numerical solution of the magnetohydrodynamic equations. J. Comput. Phys. 35, 426–430 (1980)MathSciNetCrossRefMATH
18.
Zurück zum Zitat Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)CrossRefMATH Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, New York (1991)CrossRefMATH
19.
Zurück zum Zitat Cai, W., Hu, J., Zhang, S.: High order hierarchical divergence-free constrained transport H(div) finite element method for magnetic induction equation. Numer. Math. Theor. Methods Appl. 10, 243–254 (2017)MathSciNetCrossRefMATH Cai, W., Hu, J., Zhang, S.: High order hierarchical divergence-free constrained transport H(div) finite element method for magnetic induction equation. Numer. Math. Theor. Methods Appl. 10, 243–254 (2017)MathSciNetCrossRefMATH
20.
Zurück zum Zitat Cai, W., Wu, J., Xin, J.: Divergence-free H(div)-conforming hierarchical bases for magnetohydrodynamics (MHD). Commun. Math. Stat. 1, 19–35 (2013)MathSciNetCrossRefMATH Cai, W., Wu, J., Xin, J.: Divergence-free H(div)-conforming hierarchical bases for magnetohydrodynamics (MHD). Commun. Math. Stat. 1, 19–35 (2013)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Chandrashekar, P., Klingenberg, C.: Entropy stable finite volume scheme for ideal compressible mhd on 2-D Cartesian meshes. SIAM J. Numer. Anal. 54, 1313–1340 (2016)MathSciNetCrossRefMATH Chandrashekar, P., Klingenberg, C.: Entropy stable finite volume scheme for ideal compressible mhd on 2-D Cartesian meshes. SIAM J. Numer. Anal. 54, 1313–1340 (2016)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Cockburn, B., Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194, 588–610 (2004)MathSciNetCrossRefMATH Cockburn, B., Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for the Maxwell equations. J. Comput. Phys. 194, 588–610 (2004)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175, 645–673 (2002)MathSciNetCrossRefMATH Dedner, A., Kemm, F., Kröner, D., Munz, C.-D., Schnitzer, T., Wesenberg, M.: Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175, 645–673 (2002)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Evans, C.R., Hawley, J.F.: Simulation of magnetohydrodynamic flows—a constrained transport method. Astrophys. J. 332, 659–677 (1988)CrossRef Evans, C.R., Hawley, J.F.: Simulation of magnetohydrodynamic flows—a constrained transport method. Astrophys. J. 332, 659–677 (1988)CrossRef
26.
Zurück zum Zitat Fuchs, F.G., Karlsen, K.H., Mishra, S., Risebro, N.H.: Stable upwind schemes for the magnetic induction equation. ESAIM: M2AN 43, 825–852 (2009)MathSciNetCrossRefMATH Fuchs, F.G., Karlsen, K.H., Mishra, S., Risebro, N.H.: Stable upwind schemes for the magnetic induction equation. ESAIM: M2AN 43, 825–852 (2009)MathSciNetCrossRefMATH
28.
Zurück zum Zitat Hu, K., Ma, Y., Xu, J.: Stable finite element methods preserving \(\nabla \cdot b=0\) exactly for mhd models. Numer. Math. 135, 371–396 (2017)MathSciNetCrossRefMATH Hu, K., Ma, Y., Xu, J.: Stable finite element methods preserving \(\nabla \cdot b=0\) exactly for mhd models. Numer. Math. 135, 371–396 (2017)MathSciNetCrossRefMATH
29.
Zurück zum Zitat Koley, U., Mishra, S., Risebro, N.H., Svärd, M.: Higher order finite difference schemes for the magnetic induction equations. BIT Numer. Math. 49, 375–395 (2009)MathSciNetCrossRefMATH Koley, U., Mishra, S., Risebro, N.H., Svärd, M.: Higher order finite difference schemes for the magnetic induction equations. BIT Numer. Math. 49, 375–395 (2009)MathSciNetCrossRefMATH
30.
Zurück zum Zitat Koley, U., Mishra, S., Risebro, N.H., Svärd, M.: Higher-order finite difference schemes for the magnetic induction equations with resistivity. IMA J. Numer. Anal. 32, 1173–1193 (2012)MathSciNetCrossRefMATH Koley, U., Mishra, S., Risebro, N.H., Svärd, M.: Higher-order finite difference schemes for the magnetic induction equations with resistivity. IMA J. Numer. Anal. 32, 1173–1193 (2012)MathSciNetCrossRefMATH
31.
Zurück zum Zitat Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for MHD equations. J. Sci. Comput. 22–23, 413–442 (2005)MathSciNetCrossRefMATH Li, F., Shu, C.-W.: Locally divergence-free discontinuous Galerkin methods for MHD equations. J. Sci. Comput. 22–23, 413–442 (2005)MathSciNetCrossRefMATH
32.
Zurück zum Zitat Li, F., Xu, L.: Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations. J. Comput. Phys. 231, 2655–2675 (2012)MathSciNetCrossRefMATH Li, F., Xu, L.: Arbitrary order exactly divergence-free central discontinuous Galerkin methods for ideal MHD equations. J. Comput. Phys. 231, 2655–2675 (2012)MathSciNetCrossRefMATH
33.
Zurück zum Zitat Li, F., Xu, L., Yakovlev, S.: Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field. J. Comput. Phys. 230, 4828–4847 (2011)MathSciNetCrossRefMATH Li, F., Xu, L., Yakovlev, S.: Central discontinuous Galerkin methods for ideal MHD equations with the exactly divergence-free magnetic field. J. Comput. Phys. 230, 4828–4847 (2011)MathSciNetCrossRefMATH
35.
Zurück zum Zitat Powell, K.: An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). Technical Report 94-24, ICASE, NASA Langley (1994) Powell, K.: An approximate Riemann solver for magnetohydrodynamics (that works in more than one dimension). Technical Report 94-24, ICASE, NASA Langley (1994)
36.
Zurück zum Zitat Quarteroni, A.M., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer Publishing Company, Incorporated, 1st ed. 1994. 2nd printing ed. (2008) Quarteroni, A.M., Valli, A.: Numerical Approximation of Partial Differential Equations. Springer Publishing Company, Incorporated, 1st ed. 1994. 2nd printing ed. (2008)
37.
Zurück zum Zitat Raviart, P.A., Thomas, J.M.: A Mixed Finite Element Method for 2-nd Order Elliptic Problems, pp. 292–315. Springer, Berlin (1977) Raviart, P.A., Thomas, J.M.: A Mixed Finite Element Method for 2-nd Order Elliptic Problems, pp. 292–315. Springer, Berlin (1977)
38.
Zurück zum Zitat Schötzau, D.: Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math. 96, 771–800 (2004)MathSciNetCrossRefMATH Schötzau, D.: Mixed finite element methods for stationary incompressible magneto-hydrodynamics. Numer. Math. 96, 771–800 (2004)MathSciNetCrossRefMATH
39.
Zurück zum Zitat Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)MathSciNetCrossRefMATH Shu, C.-W., Osher, S.: Efficient implementation of essentially non-oscillatory shock-capturing schemes. J. Comput. Phys. 77, 439–471 (1988)MathSciNetCrossRefMATH
40.
41.
Zurück zum Zitat Winters, A.R., Gassner, G.J.: Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations. J. Comput. Phys. 304, 72–108 (2016)MathSciNetCrossRefMATH Winters, A.R., Gassner, G.J.: Affordable, entropy conserving and entropy stable flux functions for the ideal MHD equations. J. Comput. Phys. 304, 72–108 (2016)MathSciNetCrossRefMATH
42.
Zurück zum Zitat Yang, H., Li, F.: Stability analysis and error estimates of an exactly divergence-free method for the magnetic induction equations. ESAIM: M2AN 50, 965–993 (2016)MathSciNetCrossRefMATH Yang, H., Li, F.: Stability analysis and error estimates of an exactly divergence-free method for the magnetic induction equations. ESAIM: M2AN 50, 965–993 (2016)MathSciNetCrossRefMATH
43.
Zurück zum Zitat Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)CrossRefMATH Yee, K.: Numerical solution of initial boundary value problems involving Maxwell’s equations in isotropic media. IEEE Trans. Antennas Propag. 14, 302–307 (1966)CrossRefMATH
Metadaten
Titel
A Global Divergence Conforming DG Method for Hyperbolic Conservation Laws with Divergence Constraint
verfasst von
Praveen Chandrashekar
Publikationsdatum
28.09.2018
Verlag
Springer US
Erschienen in
Journal of Scientific Computing / Ausgabe 1/2019
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-018-0841-4

Weitere Artikel der Ausgabe 1/2019

Journal of Scientific Computing 1/2019 Zur Ausgabe

Premium Partner