Skip to main content
Erschienen in: Clean Technologies and Environmental Policy 4/2016

03.02.2016 | Original Paper

A integrated route for CO2 capture in the steel industry and its conversion into CaCO3 using fundamentals of Solvay process

verfasst von: P. C. de Carvalho Pinto, T. R. da Silva, F. M. Linhares, F. V. de Andrade, M. M. de Oliveira Carvalho, G. M. de Lima

Erschienen in: Clean Technologies and Environmental Policy | Ausgabe 4/2016

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this work we propose the transformation of CO2 into calcium carbonate utilizing steel slag and the waste heat generated in the steel industry. The necessary chemicals, aqueous NH4Cl and solid NaHCO3, were obtained as products of a bench scale Solvay process. Our approach is divided into four steps: (i) CO2 capture using ammoniated brine, (ii) Ca2+ lixiviation from steel slag, through the reaction with NH4Cl(aq), (iii) CaCO3 precipitation by reacting the leachate with NaHCO3, and (iv) NaCl and NH3 reclamation. Steel slag is utilized as the source of calcium. A small amount of heat is required by the overall process, which could be also provided by waste heat from the steel industry. Laboratory scale experiments showed that nearly 95 wt% of NaCl and NH3 necessary for the mineral carbonation can be regenerated, therefore minimizing costs. At the end of this process, 98 wt% pure CaCO3 is obtained, and up to 94 wt% of the extracted Ca2+ was precipitated with no need for pH adjustments. Finally, we observed that, depending on the source of the steel slag, 86 kg of high purity CaCO3 could be obtained from 38 kg of CO2 and 1000 kg of steel slag.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Alnouri SY, Linke P, El-Halwagi MM (2014) Water integration in industrial zones: a spatial representation with direct recycle applications. Clean Technol Environ Policy 16:1637–1659CrossRef Alnouri SY, Linke P, El-Halwagi MM (2014) Water integration in industrial zones: a spatial representation with direct recycle applications. Clean Technol Environ Policy 16:1637–1659CrossRef
Zurück zum Zitat Azdarpour A, Asadullah M, Mohammadian E et al (2015) A review on carbon dioxide mineral carbonation through pH-swing process. Chem Eng J 279:615–630CrossRef Azdarpour A, Asadullah M, Mohammadian E et al (2015) A review on carbon dioxide mineral carbonation through pH-swing process. Chem Eng J 279:615–630CrossRef
Zurück zum Zitat Bak C, Asif M, Kim W (2015) Experimental study on CO2 capture by chilled ammonia process. Chem Eng J 265:1–8CrossRef Bak C, Asif M, Kim W (2015) Experimental study on CO2 capture by chilled ammonia process. Chem Eng J 265:1–8CrossRef
Zurück zum Zitat Baldyga J, Henczka M, Sokolnicka K (2011) Mineral carbonation accelerated by dicarboxylic acids as a disposal process of carbon dioxide. Chem Eng Res Des 89(9):1841–1854CrossRef Baldyga J, Henczka M, Sokolnicka K (2011) Mineral carbonation accelerated by dicarboxylic acids as a disposal process of carbon dioxide. Chem Eng Res Des 89(9):1841–1854CrossRef
Zurück zum Zitat Bobicki ER, Liu Q, Xu Z et al (2012) Carbon capture and storage using alkaline industrial wastes. Prog Energ Combust 38(2):302–320CrossRef Bobicki ER, Liu Q, Xu Z et al (2012) Carbon capture and storage using alkaline industrial wastes. Prog Energ Combust 38(2):302–320CrossRef
Zurück zum Zitat Bodor M, Santos RM, Van Gerven T et al (2013) Recent developments and perspectives on the treatment of industrial wastes by mineral carbonation—a review. Cent Eur J Eng 3(4):566–584 Bodor M, Santos RM, Van Gerven T et al (2013) Recent developments and perspectives on the treatment of industrial wastes by mineral carbonation—a review. Cent Eur J Eng 3(4):566–584
Zurück zum Zitat Bonenfant D, Kharoune L, Sauve S et al (2008) CO2 sequestration potential of steel slags at ambient pressure and temperature. Ind Eng Chem Res 47(20):7610–7616CrossRef Bonenfant D, Kharoune L, Sauve S et al (2008) CO2 sequestration potential of steel slags at ambient pressure and temperature. Ind Eng Chem Res 47(20):7610–7616CrossRef
Zurück zum Zitat Bonfils B, Julcour-Lebigue C, Guyot F et al (2012) Comprehensive analysis of direct aqueous mineral carbonation using dissolution enhancing organic additives. Int J Greenh Gas Control 9:334–346CrossRef Bonfils B, Julcour-Lebigue C, Guyot F et al (2012) Comprehensive analysis of direct aqueous mineral carbonation using dissolution enhancing organic additives. Int J Greenh Gas Control 9:334–346CrossRef
Zurück zum Zitat Calado V (2003) Planejamento de Experimentos usando o Statistica. Editora E-papers Calado V (2003) Planejamento de Experimentos usando o Statistica. Editora E-papers
Zurück zum Zitat Chang E, Chen C, Chen Y et al (2011) Performance evaluation for carbonation of steel-making slags in a slurry reactor. J Hazard Mater 186(1):558–564CrossRef Chang E, Chen C, Chen Y et al (2011) Performance evaluation for carbonation of steel-making slags in a slurry reactor. J Hazard Mater 186(1):558–564CrossRef
Zurück zum Zitat Darde V, van Well WJ, Stenby EH et al (2011) CO2 capture using aqueous ammonia: kinetic study and process simulation. Energy Procedia 4:1443–1450CrossRef Darde V, van Well WJ, Stenby EH et al (2011) CO2 capture using aqueous ammonia: kinetic study and process simulation. Energy Procedia 4:1443–1450CrossRef
Zurück zum Zitat Das B, Prakash S, Reddy P et al (2007) An overview of utilization of slag and sludge from steel industries. Resour Conserv Recycl 50(1):40–57CrossRef Das B, Prakash S, Reddy P et al (2007) An overview of utilization of slag and sludge from steel industries. Resour Conserv Recycl 50(1):40–57CrossRef
Zurück zum Zitat de Carvalho Pinto P, de Oliveira Carvalho M, Linhares F et al (2015) A cleaner production of sodium hydrogen carbonate: partial replacement of lime by steel slag milk in the ammonia recovery step of the Solvay process. Clean Techn Environ Policy 17:2311–2321CrossRef de Carvalho Pinto P, de Oliveira Carvalho M, Linhares F et al (2015) A cleaner production of sodium hydrogen carbonate: partial replacement of lime by steel slag milk in the ammonia recovery step of the Solvay process. Clean Techn Environ Policy 17:2311–2321CrossRef
Zurück zum Zitat Dlugogorski BZ, Balucan RD (2014) Dehydroxylation of serpentine minerals: Implications for mineral carbonation. Renew Sustain Energy Rev 31:353–367CrossRef Dlugogorski BZ, Balucan RD (2014) Dehydroxylation of serpentine minerals: Implications for mineral carbonation. Renew Sustain Energy Rev 31:353–367CrossRef
Zurück zum Zitat Dri M, Sanna A, Maroto-Valer MM (2013) Dissolution of steel slag and recycled concrete aggregate in ammonium bisulphate for CO2 mineral carbonation. Fuel Process Technol 113:114–122CrossRef Dri M, Sanna A, Maroto-Valer MM (2013) Dissolution of steel slag and recycled concrete aggregate in ammonium bisulphate for CO2 mineral carbonation. Fuel Process Technol 113:114–122CrossRef
Zurück zum Zitat Eloneva S, Mannisto P, Said A et al (2011) Ammonium salt-based steelmaking slag carbonation: precipitation of CaCO3 and ammonia losses assessment. Greenh Gases Sci Technol 1(4):305–311CrossRef Eloneva S, Mannisto P, Said A et al (2011) Ammonium salt-based steelmaking slag carbonation: precipitation of CaCO3 and ammonia losses assessment. Greenh Gases Sci Technol 1(4):305–311CrossRef
Zurück zum Zitat Eloneva S, Said A, Fogelholm C et al (2012) Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate. Appl Energy 90(1):329–334CrossRef Eloneva S, Said A, Fogelholm C et al (2012) Preliminary assessment of a method utilizing carbon dioxide and steelmaking slags to produce precipitated calcium carbonate. Appl Energy 90(1):329–334CrossRef
Zurück zum Zitat EPE—Empresa de Pesquisa Energética (2009) Caracterização do uso da Energia no Setor Siderúrgico Brasileiro Nota Técnica DEA 02/09 EPE—Empresa de Pesquisa Energética (2009) Caracterização do uso da Energia no Setor Siderúrgico Brasileiro Nota Técnica DEA 02/09
Zurück zum Zitat Galan I, Glasser FP, Andrade C (2013) Calcium carbonate decomposition. J Therm Anal Calorim 111(2):1197–1202CrossRef Galan I, Glasser FP, Andrade C (2013) Calcium carbonate decomposition. J Therm Anal Calorim 111(2):1197–1202CrossRef
Zurück zum Zitat Geerlings H, Zevenhoven R (2013) CO2 mineralization-bridge between storage and utilization of CO2. Annu Rev Chem Biomol Eng 4:103–117CrossRef Geerlings H, Zevenhoven R (2013) CO2 mineralization-bridge between storage and utilization of CO2. Annu Rev Chem Biomol Eng 4:103–117CrossRef
Zurück zum Zitat Gielen D, Moriguchi Y (2002) CO2 in the iron and steel industry: an analysis of Japanese emission reduction potentials. Energy Policy 30(10):849–863CrossRef Gielen D, Moriguchi Y (2002) CO2 in the iron and steel industry: an analysis of Japanese emission reduction potentials. Energy Policy 30(10):849–863CrossRef
Zurück zum Zitat Gutiérrez-Arriaga CG, Abdelhady F, Bamufleh HS, Serna-González M, El-Halwagi MM, Ponce-Ortega JM (2015) Industrial waste heat recovery and cogeneration involving organic Rankine cycles. Clean Technol Environ Policy 17:767–779CrossRef Gutiérrez-Arriaga CG, Abdelhady F, Bamufleh HS, Serna-González M, El-Halwagi MM, Ponce-Ortega JM (2015) Industrial waste heat recovery and cogeneration involving organic Rankine cycles. Clean Technol Environ Policy 17:767–779CrossRef
Zurück zum Zitat Hall C, Large D, Adderley B et al (2014) Calcium leaching from waste steelmaking slag: significance of leachate chemistry and effects on slag grain mineralogy. Miner Eng 65:156–162CrossRef Hall C, Large D, Adderley B et al (2014) Calcium leaching from waste steelmaking slag: significance of leachate chemistry and effects on slag grain mineralogy. Miner Eng 65:156–162CrossRef
Zurück zum Zitat Han K, Ahn CK, Lee MS et al (2013) Current status and challenges of the ammonia-based CO2 capture technologies toward commercialization. Int J Greenh Gas Control 14:270–281CrossRef Han K, Ahn CK, Lee MS et al (2013) Current status and challenges of the ammonia-based CO2 capture technologies toward commercialization. Int J Greenh Gas Control 14:270–281CrossRef
Zurück zum Zitat Han K, Ahn CK, Lee MS (2014) Performance of an ammonia-based CO2 capture pilot facility in iron and steel industry. Int J Greenh Gas Control 27:239–246CrossRef Han K, Ahn CK, Lee MS (2014) Performance of an ammonia-based CO2 capture pilot facility in iron and steel industry. Int J Greenh Gas Control 27:239–246CrossRef
Zurück zum Zitat Huang H, Shi Y, Li W et al (2001) Dual alkali approaches for the capture and separation of CO2. Energy Fuels 15(2):263–268CrossRef Huang H, Shi Y, Li W et al (2001) Dual alkali approaches for the capture and separation of CO2. Energy Fuels 15(2):263–268CrossRef
Zurück zum Zitat Huijgen WJ, Comans RN (2006) Carbonation of steel slag for CO2 sequestration: leaching of products and reaction mechanisms. Environ Sci Technol 40(8):2790–2796CrossRef Huijgen WJ, Comans RN (2006) Carbonation of steel slag for CO2 sequestration: leaching of products and reaction mechanisms. Environ Sci Technol 40(8):2790–2796CrossRef
Zurück zum Zitat IEA (International Energy Agency) (2013a) Global action to advance carbon capture and storage—A focus on industrial applications IEA (International Energy Agency) (2013a) Global action to advance carbon capture and storage—A focus on industrial applications
Zurück zum Zitat IEA (International Energy Agency) (2013b) Technology Roadmap—Carbon capture and storage IEA (International Energy Agency) (2013b) Technology Roadmap—Carbon capture and storage
Zurück zum Zitat IEA (International Energy Agency) (2014) CO2 Emissions from Fuel Combustion 2014—Highlights IEA (International Energy Agency) (2014) CO2 Emissions from Fuel Combustion 2014—Highlights
Zurück zum Zitat Jing Z, Liu Gd, Hang G, Lian L, Shi-huai D (2013) A theoretical basis for the relationship between the industrial pollutant generation, abatement, emission and economy. Clean Technol Environ Policy 15:707–711CrossRef Jing Z, Liu Gd, Hang G, Lian L, Shi-huai D (2013) A theoretical basis for the relationship between the industrial pollutant generation, abatement, emission and economy. Clean Technol Environ Policy 15:707–711CrossRef
Zurück zum Zitat Jo HY, Kim JH, Lee YJ et al (2012) Evaluation of factors affecting mineral carbonation of CO2 using coal fly ash in aqueous solutions under ambient conditions. Chem Eng J 183:77–87CrossRef Jo HY, Kim JH, Lee YJ et al (2012) Evaluation of factors affecting mineral carbonation of CO2 using coal fly ash in aqueous solutions under ambient conditions. Chem Eng J 183:77–87CrossRef
Zurück zum Zitat Jones CW (2011) CO2 capture from dilute gases as a component of modern global carbon management. Annu Rev Chem Biomol Eng 2:31–52CrossRef Jones CW (2011) CO2 capture from dilute gases as a component of modern global carbon management. Annu Rev Chem Biomol Eng 2:31–52CrossRef
Zurück zum Zitat Kasikowski T, Buczkowski R, Lemanowska E (2004) Cleaner production in the ammonia–soda industry: an ecological and economic study. J Environ Manag 73(4):339–356CrossRef Kasikowski T, Buczkowski R, Lemanowska E (2004) Cleaner production in the ammonia–soda industry: an ecological and economic study. J Environ Manag 73(4):339–356CrossRef
Zurück zum Zitat Kelly K, Silcox G, Sarofim A et al (2011) An evaluation of ex situ, industrial-scale, aqueous CO2 mineralization. Int J Greenh Gas Control 5(6):1587–1595CrossRef Kelly K, Silcox G, Sarofim A et al (2011) An evaluation of ex situ, industrial-scale, aqueous CO2 mineralization. Int J Greenh Gas Control 5(6):1587–1595CrossRef
Zurück zum Zitat Kim JY, Han K, Ahn CK et al (2013) Operating cost for CO2 capture process using aqueous ammonia. Energy Procedia 37:677–682CrossRef Kim JY, Han K, Ahn CK et al (2013) Operating cost for CO2 capture process using aqueous ammonia. Energy Procedia 37:677–682CrossRef
Zurück zum Zitat Kirchofer A, Brandt A, Krevor S et al (2012) Impact of alkalinity sources on the life-cycle energy efficiency of mineral carbonation technologies. Energy Environ Sci 5(9):8631–8641CrossRef Kirchofer A, Brandt A, Krevor S et al (2012) Impact of alkalinity sources on the life-cycle energy efficiency of mineral carbonation technologies. Energy Environ Sci 5(9):8631–8641CrossRef
Zurück zum Zitat Kirchofer A, Becker A, Brandt A et al (2013) CO2 mitigation potential of mineral carbonation with industrial alkalinity sources in the United States. Environ Sci Technol 47(13):7548–7554 Kirchofer A, Becker A, Brandt A et al (2013) CO2 mitigation potential of mineral carbonation with industrial alkalinity sources in the United States. Environ Sci Technol 47(13):7548–7554
Zurück zum Zitat Kodama S, Nishimoto T, Yamamoto N et al (2008) Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution. Energy 33(5):776–784CrossRef Kodama S, Nishimoto T, Yamamoto N et al (2008) Development of a new pH-swing CO2 mineralization process with a recyclable reaction solution. Energy 33(5):776–784CrossRef
Zurück zum Zitat López-Periago AM, Pacciani R, Vega LF et al (2011) Monitoring the effect of mineral precursor, fluid phase CO2–H2O composition, and stirring on CaCO3 crystallization in a supercritical-ultrasound carbonation process. Crys Growth Des 11(12):5324–5332CrossRef López-Periago AM, Pacciani R, Vega LF et al (2011) Monitoring the effect of mineral precursor, fluid phase CO2–H2O composition, and stirring on CaCO3 crystallization in a supercritical-ultrasound carbonation process. Crys Growth Des 11(12):5324–5332CrossRef
Zurück zum Zitat Ma S, Song H, Wang M et al (2013) Research on mechanism of ammonia escaping and control in the process of CO2 capture using ammonia solution. Chem Eng Res Des 91(7):1327–1334CrossRef Ma S, Song H, Wang M et al (2013) Research on mechanism of ammonia escaping and control in the process of CO2 capture using ammonia solution. Chem Eng Res Des 91(7):1327–1334CrossRef
Zurück zum Zitat Ma S, Chen G, Guo M et al (2014) Path analysis on CO2 resource utilization based on carbon capture using ammonia method in coal-fired power plants. Renew Sustain Energy Rev 37:687–697CrossRef Ma S, Chen G, Guo M et al (2014) Path analysis on CO2 resource utilization based on carbon capture using ammonia method in coal-fired power plants. Renew Sustain Energy Rev 37:687–697CrossRef
Zurück zum Zitat Mattila H, Grigaliūnaitė I, Zevenhoven R (2012) Chemical kinetics modeling and process parameter sensitivity for precipitated calcium carbonate production from steelmaking slags. Chem Eng J 192:77–89CrossRef Mattila H, Grigaliūnaitė I, Zevenhoven R (2012) Chemical kinetics modeling and process parameter sensitivity for precipitated calcium carbonate production from steelmaking slags. Chem Eng J 192:77–89CrossRef
Zurück zum Zitat Montes-Hernandez G, Perez-Lopez R, Renard F et al (2009) Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. J Hazard Mater 161(2):1347–1354CrossRef Montes-Hernandez G, Perez-Lopez R, Renard F et al (2009) Mineral sequestration of CO2 by aqueous carbonation of coal combustion fly-ash. J Hazard Mater 161(2):1347–1354CrossRef
Zurück zum Zitat Morone M, Costa G, Polettini A et al (2014) Valorization of steel slag by a combined carbonation and granulation treatment. Miner Eng 59:82–90CrossRef Morone M, Costa G, Polettini A et al (2014) Valorization of steel slag by a combined carbonation and granulation treatment. Miner Eng 59:82–90CrossRef
Zurück zum Zitat Niu Z, Guo Y, Zeng Q et al (2013) A novel process for capturing carbon dioxide using aqueous ammonia. Fuel Process Technol 108:154–162CrossRef Niu Z, Guo Y, Zeng Q et al (2013) A novel process for capturing carbon dioxide using aqueous ammonia. Fuel Process Technol 108:154–162CrossRef
Zurück zum Zitat Olajire AA (2013) A review of mineral carbonation technology in sequestration of CO2. J Pet Sci Eng 109:364–392CrossRef Olajire AA (2013) A review of mineral carbonation technology in sequestration of CO2. J Pet Sci Eng 109:364–392CrossRef
Zurück zum Zitat Pan S, Chang E, Chiang P (2012) CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol Air Qual Res 12(5):770–791 Pan S, Chang E, Chiang P (2012) CO2 capture by accelerated carbonation of alkaline wastes: a review on its principles and applications. Aerosol Air Qual Res 12(5):770–791
Zurück zum Zitat Pan S, Chiang P, Chen Y et al (2013a) Systematic approach to determination of maximum achievable capture capacity via leaching and carbonation processes for alkaline steelmaking wastes in a rotating packed bed. Environ Sci Technol 47(23):13677–13685CrossRef Pan S, Chiang P, Chen Y et al (2013a) Systematic approach to determination of maximum achievable capture capacity via leaching and carbonation processes for alkaline steelmaking wastes in a rotating packed bed. Environ Sci Technol 47(23):13677–13685CrossRef
Zurück zum Zitat Pan S, Chiang P, Chen Y et al (2013b) Ex situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed. Environ Sci Technol 47(7):3308–3315 Pan S, Chiang P, Chen Y et al (2013b) Ex situ CO2 capture by carbonation of steelmaking slag coupled with metalworking wastewater in a rotating packed bed. Environ Sci Technol 47(7):3308–3315
Zurück zum Zitat Pan S, Chiang A, Chang E et al (2015) An innovative approach to integrated carbon mineralization and waste utilization: a review. Aerosol Air Qual Res 15:1072–1091 Pan S, Chiang A, Chang E et al (2015) An innovative approach to integrated carbon mineralization and waste utilization: a review. Aerosol Air Qual Res 15:1072–1091
Zurück zum Zitat Pardo N, Moya JA (2013) Prospective scenarios on energy efficiency and CO2 emissions in the European iron & steel industry. Energy 54:113–128CrossRef Pardo N, Moya JA (2013) Prospective scenarios on energy efficiency and CO2 emissions in the European iron & steel industry. Energy 54:113–128CrossRef
Zurück zum Zitat Renforth P, Washbourne C, Taylder J et al (2011) Silicate production and availability for mineral carbonation. Environ Sci Technol 45(6):2035–2041CrossRef Renforth P, Washbourne C, Taylder J et al (2011) Silicate production and availability for mineral carbonation. Environ Sci Technol 45(6):2035–2041CrossRef
Zurück zum Zitat Rhee CH, Kim JY, Han K et al (2011) Process analysis for ammonia-based CO2 capture in ironmaking industry. Energy Procedia 4:1486–1493CrossRef Rhee CH, Kim JY, Han K et al (2011) Process analysis for ammonia-based CO2 capture in ironmaking industry. Energy Procedia 4:1486–1493CrossRef
Zurück zum Zitat Said A, Mattila HP, Jarvinen M, Zevenhoven R (2013) Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2. Appl Energy 112:765–771CrossRef Said A, Mattila HP, Jarvinen M, Zevenhoven R (2013) Production of precipitated calcium carbonate (PCC) from steelmaking slag for fixation of CO2. Appl Energy 112:765–771CrossRef
Zurück zum Zitat Said A, Mattila O, Eloneva S et al (2015) Enhancement of calcium dissolution from steel slag by ultrasound. Chem Eng Process 89:1–8CrossRef Said A, Mattila O, Eloneva S et al (2015) Enhancement of calcium dissolution from steel slag by ultrasound. Chem Eng Process 89:1–8CrossRef
Zurück zum Zitat Sanna A, Hall MR, Maroto-Valer M (2012) Post-processing pathways in carbon capture and storage by mineral carbonation (CCSM) towards the introduction of carbon neutral materials. Energy Environ Sci 5(7):7781–7796CrossRef Sanna A, Hall MR, Maroto-Valer M (2012) Post-processing pathways in carbon capture and storage by mineral carbonation (CCSM) towards the introduction of carbon neutral materials. Energy Environ Sci 5(7):7781–7796CrossRef
Zurück zum Zitat Sanna A, Uibu M, Caramanna G et al (2014) A review of mineral carbonation technologies to sequester CO2. Chem Soc Rev 43(23):8049–8080CrossRef Sanna A, Uibu M, Caramanna G et al (2014) A review of mineral carbonation technologies to sequester CO2. Chem Soc Rev 43(23):8049–8080CrossRef
Zurück zum Zitat Santos RM, Van Bouwel J, Vandevelde E et al (2013) Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: effect of process parameters on geochemical properties. Int J Greenh Gas Control 17:32–45CrossRef Santos RM, Van Bouwel J, Vandevelde E et al (2013) Accelerated mineral carbonation of stainless steel slags for CO2 storage and waste valorization: effect of process parameters on geochemical properties. Int J Greenh Gas Control 17:32–45CrossRef
Zurück zum Zitat Shi C (2004) Steel slag—its production, processing, characteristics, and cementitious properties. J Mater Civ Eng 16:230–236CrossRef Shi C (2004) Steel slag—its production, processing, characteristics, and cementitious properties. J Mater Civ Eng 16:230–236CrossRef
Zurück zum Zitat Steinhauser G (2008) Cleaner production in the Solvay process: general strategies and recent developments. J Clean Prod 16(7):833–841CrossRef Steinhauser G (2008) Cleaner production in the Solvay process: general strategies and recent developments. J Clean Prod 16(7):833–841CrossRef
Zurück zum Zitat Sun Y, Yao M, Zhang J et al (2011) Indirect CO2 mineral sequestration by steelmaking slag with NH4Cl as leaching solution. Chem Eng J 173(2):437–445CrossRef Sun Y, Yao M, Zhang J et al (2011) Indirect CO2 mineral sequestration by steelmaking slag with NH4Cl as leaching solution. Chem Eng J 173(2):437–445CrossRef
Zurück zum Zitat Tanaka K (2012) A comparison study of EU and Japan methods to assess CO2 emission reduction and energy saving in the iron and steel industry. Energy Policy 51:578–585CrossRef Tanaka K (2012) A comparison study of EU and Japan methods to assess CO2 emission reduction and energy saving in the iron and steel industry. Energy Policy 51:578–585CrossRef
Zurück zum Zitat Teir S, Eloneva S, Fogelholm C et al (2007) Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production. Energy 32(4):528–539CrossRef Teir S, Eloneva S, Fogelholm C et al (2007) Dissolution of steelmaking slags in acetic acid for precipitated calcium carbonate production. Energy 32(4):528–539CrossRef
Zurück zum Zitat Tian S, Jiang J, Li K et al (2014) Performance of steel slag in carbonation–calcination looping for CO2 capture from industrial flue gas. RSC Adv 4(14):6858–6862CrossRef Tian S, Jiang J, Li K et al (2014) Performance of steel slag in carbonation–calcination looping for CO2 capture from industrial flue gas. RSC Adv 4(14):6858–6862CrossRef
Zurück zum Zitat Trypuć M, Białowicz K (2011) CaCO3 production using liquid waste from Solvay method. J Clean Prod 19(6):751–756CrossRef Trypuć M, Białowicz K (2011) CaCO3 production using liquid waste from Solvay method. J Clean Prod 19(6):751–756CrossRef
Zurück zum Zitat Versteeg P, Rubin ES (2011) Technical and economic assessment of ammonia-based post-combustion CO2 capture. Energy Procedia 4:1957–1964CrossRef Versteeg P, Rubin ES (2011) Technical and economic assessment of ammonia-based post-combustion CO2 capture. Energy Procedia 4:1957–1964CrossRef
Zurück zum Zitat Wang X, Maroto-Valer MM (2011) Integration of CO2 capture and mineral carbonation by using recyclable ammonium salts. ChemSusChem 4(9):1291–1300CrossRef Wang X, Maroto-Valer MM (2011) Integration of CO2 capture and mineral carbonation by using recyclable ammonium salts. ChemSusChem 4(9):1291–1300CrossRef
Zurück zum Zitat Wang K, Wang C, Lu X et al (2007) Scenario analysis on CO2 emissions reduction potential in China’s iron and steel industry. Energy Policy 35(4):2320–2335CrossRef Wang K, Wang C, Lu X et al (2007) Scenario analysis on CO2 emissions reduction potential in China’s iron and steel industry. Energy Policy 35(4):2320–2335CrossRef
Zurück zum Zitat World Steel Association (2015) Steel’s contribution to a low carbon future and climate resilient societies—world steel position paper World Steel Association (2015) Steel’s contribution to a low carbon future and climate resilient societies—world steel position paper
Zurück zum Zitat Wszelaka-Rylik M, Piotrowska K, Gierycz P (2015) Simulation, aggregation and thermal analysis of nanostructured calcite obtained in a controlled multiphase process. J Therm Anal Calorim 119(2):1323–1338CrossRef Wszelaka-Rylik M, Piotrowska K, Gierycz P (2015) Simulation, aggregation and thermal analysis of nanostructured calcite obtained in a controlled multiphase process. J Therm Anal Calorim 119(2):1323–1338CrossRef
Zurück zum Zitat Yang N, Yu H, Li L et al (2014) Aqueous ammonia (NH3) based post combustion CO2 capture: a review. Oil Gas Sci Technol 69(5):931–945CrossRef Yang N, Yu H, Li L et al (2014) Aqueous ammonia (NH3) based post combustion CO2 capture: a review. Oil Gas Sci Technol 69(5):931–945CrossRef
Zurück zum Zitat Yu J, Wang K (2011) Study on characteristics of steel slag for CO2 capture. Energy Fuels 25(11):5483–5492CrossRef Yu J, Wang K (2011) Study on characteristics of steel slag for CO2 capture. Energy Fuels 25(11):5483–5492CrossRef
Zurück zum Zitat Yu H, Morgan S, Allport A et al (2011) Results from trialling aqueous ammonia based post combustion capture in a pilot plant at Munmorah. Energy Procedia 4:1294–1302CrossRef Yu H, Morgan S, Allport A et al (2011) Results from trialling aqueous ammonia based post combustion capture in a pilot plant at Munmorah. Energy Procedia 4:1294–1302CrossRef
Zurück zum Zitat Zhang Y, Dawe RA (2000) Influence of Mg2+ on the kinetics of calcite precipitation and calcite crystal morphology. Chem Geol 163(1):129–138CrossRef Zhang Y, Dawe RA (2000) Influence of Mg2+ on the kinetics of calcite precipitation and calcite crystal morphology. Chem Geol 163(1):129–138CrossRef
Zurück zum Zitat Zhang H, Wang H, Zhu X et al (2013) A review of waste heat recovery technologies towards molten slag in steel industry. Appl Energy 112:956–966CrossRef Zhang H, Wang H, Zhu X et al (2013) A review of waste heat recovery technologies towards molten slag in steel industry. Appl Energy 112:956–966CrossRef
Metadaten
Titel
A integrated route for CO2 capture in the steel industry and its conversion into CaCO3 using fundamentals of Solvay process
verfasst von
P. C. de Carvalho Pinto
T. R. da Silva
F. M. Linhares
F. V. de Andrade
M. M. de Oliveira Carvalho
G. M. de Lima
Publikationsdatum
03.02.2016
Verlag
Springer Berlin Heidelberg
Erschienen in
Clean Technologies and Environmental Policy / Ausgabe 4/2016
Print ISSN: 1618-954X
Elektronische ISSN: 1618-9558
DOI
https://doi.org/10.1007/s10098-016-1105-3

Weitere Artikel der Ausgabe 4/2016

Clean Technologies and Environmental Policy 4/2016 Zur Ausgabe